期刊文献+

基于决策距离的分布式多传感器动态分组算法 被引量:1

Algorithm of Distributed Multi-sensor Dynamic Grouping Based on Decision Space
下载PDF
导出
摘要 飞行试验中多传感器测量系统中因类型、精度以及空间位置的变化,导致在数据融合时往往不能得到最优测量精度;提出了一种新的分布式多传感器目标跟踪分组融合算法,即利用模糊理论中的决策距离(Decision Space)思想,对飞行试验目标跟踪的多传感器系统进行动态分组(Dynamic Grouping),通过定义多传感器之间的关系矩阵(Relation Matrix),依据判别门限(Threshold)判定其是否参与最终处理,据此以获得在分布式多传感器目标跟踪测量系统中目标跟踪测量的最佳融合数据精度;仿真结果证明,该算法是一种有效的分组算法。 In flight test, the optimal tracking measurement accuracy can not always be gained, because of the different types and the ac curacy and the changes of the measuring sensors in the Multi--sensor Target Tracking System. A new algorithm in the Distributed Multi-- sensor Target Tracking (DMTT) is introduced on the basis of fuzzy set theory in the flight test, in which the concept of decision space is used for dynamic grouping to DMTT. The relation matrix between the sensors is given that is used to distinguish which sensors will be taken together for further processing. The optimal tracking accuracy can be achieved in the Multi--sensor Target Tracking System. Simulation results prove an effective distributed algorithm.
出处 《计算机测量与控制》 CSCD 北大核心 2010年第8期1950-1952,共3页 Computer Measurement &Control
关键词 目标跟踪系统 动态分组 决策距离 target tracking system dynamic grouping decision space
  • 相关文献

参考文献6

二级参考文献15

  • 1秦卫华,胡飞,秦超英.一种简化的联合概率数据关联算法[J].西北工业大学学报,2005,23(2):276-279. 被引量:15
  • 2陈霄,薛安克,林岳松.无源声探测网多传感器单目标定位算法[J].杭州电子科技大学学报(自然科学版),2005,25(2):29-32. 被引量:5
  • 3程云鹏,肖兵.数据融合算法的评估[J].计算机测量与控制,2006,14(7):937-938. 被引量:3
  • 4[3]DongKeon K,Joohwan C. A fast DOA tracking algorithm based on the extended kalman filter.Proceeding of the IEEE 2000 National Aerospace and Electronics Conference 00CH37093:235~238
  • 5[4]Lerro D,Bar-shalom Y. Tracking with debased consistent converted measurements versus EKF.IEEE Transom AES,1993,29(3):1015~1022
  • 6[5]Bar-Shalom Y. A tutorial on multitarget-multisensor tracking and fusion.1997 IEEE National Radar Conference, 15 May,1997,Syracuse,NY
  • 7[1]Blair W D,Rice T R.Asynchronous data fusion for target tracking with a multi-tasking radar and optical sensor.SPIE,1991,1482:234~245
  • 8[2]Rice T R,Alouani A T.Single model,asynchronous fusion of correlated tracks.SPIE,1999,3692:146~176
  • 9Tian J, Chen J, Dou L H, et al. The research of test and evaluation for multi-sensor data fusion systems [A]. Proceedings of the 4th World Congress on Intelligent Control and Automation [C]. 2002, 10-14.
  • 10高立平,黄海宁,徐德民.极大似然估计的信息融合方法及其在水下航行器制导中的应用[J].西北工业大学学报,1999,17(2):306-310. 被引量:8

共引文献19

同被引文献21

  • 1胡丽芳,关欣,何友.一种有效地解决冲突证据的组合方法[J].舰船电子工程,2008,28(1):14-16. 被引量:6
  • 2Hyun Lee, Jae Sung Choi, Ramez Elmasri .A Static Evidential Network for Context Reasoning in Home-Based Care[J]. IEEE Transactions on Systems, Man and Cybernetics--Part A: Systems and Humans, November, 2010, 40(6): 1232-1243.
  • 3Ksawery Krenc, Adam Kawalec. An application of DSmT in ontology-based fusion systems[C]// 12th International Conference on Information Fusion, Seattle, WA, USA, July 6-9, 2009: 1218-1224.
  • 4Hong Wen, Xinhan Huang, Xinde Li. A new tool applied to robot perception by selecting evi- dence sources[C]//Proceedings of the IEEE International Conference onAutomation and Logistics Qingdao, China, September 2008: 2364-2369.
  • 5Xinde Li, Jean Dezert, Florentin Smarandache. Evidence Supporting Mmeasure of Similarity for Reducing the Complexity in Information Funsion[J]. Information Sciences, 2011: 1818-1835.
  • 6Fei Li, Xiaofeng Wang. An Effective Combination Rule when Evidence Conflict[C]// 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics, 2011: 11-14.
  • 7Odeberg H. Distance measures for sensor opinions[J]. Measurement Science and Technology, 1993, 4(8): 808-815.
  • 8Florentin Smarandache, Jean Desert. Advances and applications of DSmT for information fusion[J]. American Research Press, 2004(1): 15-18.
  • 9Florentin Smarandache, Jean Desert. Advances and applications of DSmT for information fusion[J]. American Research Press, 2006(2): 8-10.
  • 10Florentin Smarandache, Jean Desert. Advances and applications of DSmT for information fusion[J] American Research Press, 2009(3): 26-29.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部