摘要
飞行试验中多传感器测量系统中因类型、精度以及空间位置的变化,导致在数据融合时往往不能得到最优测量精度;提出了一种新的分布式多传感器目标跟踪分组融合算法,即利用模糊理论中的决策距离(Decision Space)思想,对飞行试验目标跟踪的多传感器系统进行动态分组(Dynamic Grouping),通过定义多传感器之间的关系矩阵(Relation Matrix),依据判别门限(Threshold)判定其是否参与最终处理,据此以获得在分布式多传感器目标跟踪测量系统中目标跟踪测量的最佳融合数据精度;仿真结果证明,该算法是一种有效的分组算法。
In flight test, the optimal tracking measurement accuracy can not always be gained, because of the different types and the ac curacy and the changes of the measuring sensors in the Multi--sensor Target Tracking System. A new algorithm in the Distributed Multi-- sensor Target Tracking (DMTT) is introduced on the basis of fuzzy set theory in the flight test, in which the concept of decision space is used for dynamic grouping to DMTT. The relation matrix between the sensors is given that is used to distinguish which sensors will be taken together for further processing. The optimal tracking accuracy can be achieved in the Multi--sensor Target Tracking System. Simulation results prove an effective distributed algorithm.
出处
《计算机测量与控制》
CSCD
北大核心
2010年第8期1950-1952,共3页
Computer Measurement &Control
关键词
目标跟踪系统
动态分组
决策距离
target tracking system
dynamic grouping
decision space