期刊文献+

一类多分子饱和反应模型的周期轨 被引量:1

Periodic orbits in a generalized system of multi-molecular saturated enzyme reactions
原文传递
导出
摘要 作者讨论了一类酶作用下的饱和反应系统的定性性质和分岔现象,并利用正规形的方法得到了在唯一平衡点附近由Hopf分岔产生的小振幅极限环,然后通过构造Poincare-Bendixson环域得到了大振幅极限环的存在性. The authors discuss the qualitative properties and bifurcations of a generalized system with saturated enzyme reactions. They calculate the coefficients of the normal form and prove a unique limit cycle of small-amplitude bifurcated from the sole equilibrium. The existence of periodic solutions of large-amplitude is given by Poincare-Bendixson theorem.
作者 冷忠建 高波
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期701-704,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 饱和反应 周期轨 正规形 HOPF分岔 saturated enzyme reaction, periodic solution, normal form, Hopf bifurcation
  • 相关文献

参考文献9

  • 1Glansdorffand P,Prigogine I.Thermodynamic theory of structure,stability and fluctuations[M].New York.Wiley,1971.
  • 2Hou X,Yan R,Zhang W N.Bifurcations of a polynomial differential system of degree n in biochemical reactions[J].Comput Math Appl,2002,43:1407.
  • 3Kwek K H,Zhang W N.Periodic solutions and dy namics of a multimolecular reaction system[J].Math Comput Modelling,2002,36:189.
  • 4Huang D Q,Gong Y,Tang Y L,et al.Degenerate equilibria at infinity in the generalized Brusselator[J].Math Comput Modelling,2005,42:167.
  • 5Tang Y L,Zhang W N.Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction[J].Comput Math Appl,2004,48:869.
  • 6Tang Y L,Zhang W N.Genernalized normal sectors and orbits in exceptional directions[J].Nonlinearity,2004,17:1407.
  • 7黄德青,冷忠建.一类广义布鲁塞尔振子模型的周期轨(英文)[J].四川大学学报(自然科学版),2007,44(3):477-481. 被引量:3
  • 8Leng Z J,Gao B,Wang Z X.Qualitative analysis of a generalized system of saturated enzyme reactions[J].Math Comput Modelling,2009,49:556.
  • 9Guckenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields[M].New York:Springer-Verlag,1983.

二级参考文献1

共引文献2

同被引文献12

  • 1Arnold V I. Some unsolved problems in the theory of differential equations and mathematical physics [J]. Russian Math Surveys, 1989,44 : 157.
  • 2Zhao Y. On the monotonicity of the period function for codlmension four quadratic system Q4 [J]. J Dif- ferential Equations, 2002,185 : 370.
  • 3Liang H, Zhao Y. On the period function of reversi- ble quadratic centers with their orbits inside quartics[J]. Nonlinear Anal,2009,71 : 5655.
  • 4Zhao Y. The period function for a quadratic integra- bles system with cubic orbits [J]. J Math Anal Ap- pl,2005, 301: 295.
  • 5Zhao Y. On the monotonicity of the period function of a quadratic system [J]. Discrete Contin Dynam Syst: Ser A,2005, 13: 795.
  • 6He Z, Zhang W. Critical periods of a periodic annu- lus linking to equilibria at infinity in a cubic system [J]. Discrete Contin Dynam Syst.. Ser A,2009, 24: 841.
  • 7Iliev I D. Perturbations of quadratic centers[J]. Bull Sci Math,1998, 122:107.
  • 8Zoladek H. Quadratic systems with center and their perturbations[J]. J Differential Equations, 1994, 109 : 224.
  • 9MardeP, Marin D, Villadelprat J. The period func- tion of reversible quadratic centers [J]. J Differential Equations,2006, 224: 120.
  • 10Loud W S. Behavior of the period of .solutions of certain plane autonomous systems near centers [J]. Contribu- tions to Differential Equations,1964, 3: 21.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部