期刊文献+

一种基于上三角频繁项集矩阵的频繁模式挖掘算法 被引量:2

Algorithms for Mining Frequent Itemsets Based on Upper Triangular Frequent Matrix
下载PDF
导出
摘要 提出了一种高效挖掘数据的频繁项目集模式的算法FIA.该算法采用一种二进制符号来表示数据,在仅扫描数据库一次之后,建立起二进制向量与上三角频繁项集矩阵,根据两者来产生出频繁项集.从而有效地缩小了搜索空间,加快了处理速度.通过实验表明,FIA算法比Apriori算法更有效. The traditional algorithms for mining association frequent patterns generate conditional sub tables, which costs much runtime and memory space. To solve these problems, a new algorithm FIA (Frequent Itemset Algorithm) is proposed. The FIA algorithm adopts a binary of symbols to compress the store data. The algorithm using logic of symbols to express data in a database, which only after one scan, and establish a binary vector and upper triangular frequent matrix, according to the both to produce a set of frequently. Thereby effectively narrowing the search space, speed up the processing speed. Through analysis showed that, FIA algorithm more effective than Apriori algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2010年第9期138-143,共6页 Microelectronics & Computer
基金 国家自然科学基金项目(70571013) 教育部新世纪优秀人才支持计划项目(NECT-06-0471) 江苏省教育厅高等教育改革研究课题
关键词 数据挖掘 关联规则 逻辑运算 频繁项集 上三角频繁矩阵 data mining association rule logical operation frequent itemset upper triangular frequent matrix
  • 相关文献

参考文献8

  • 1Agrawal R, Skikant R. Fast algorithms for mining association rules in large database[ C] //Proceedings of 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994: 478 - 499.
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]//Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD'93). New York: ACM Press, 1993:207 -216.
  • 3Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation [ C]//Proceedings of the ACM SIG- MOD internal Conference on Management of Data. Dalas Texas: ACM Press,2000:1 - 12.
  • 4Show- Jane Yen, Arbee L P Chen. A graph based approach for discovering various types of association rules[J ]. IEEE Transactions on Knowledge and Data Engineering, 2001,13(5) :839 - 845.
  • 5李哲,杨兆中,庞炳章.大型数据库中关联规则的向量法挖掘[J].计算机工程,2003,29(8):97-99. 被引量:7
  • 6陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 7胡慧蓉,王周敬.一种基于关系矩阵的关联规则快速挖掘算法[J].计算机应用,2005,25(7):1577-1579. 被引量:21
  • 8Frequent Itemset Mining Implementations Repository [EB/OL]. [2008 - 09 - 01 ]. http://fimi, cs. helsinki, fi.

二级参考文献25

  • 1Show-Jane Yen,Arbee L. P. Chen Member.A Graph-based Approach for Discovering Various Types,of Association Rules.IEEE Trans. Knowledge and Data Eng.,2001,13(5).
  • 2Aumann Y.Borders:An Efficient Algorithm for Association Generation in Dynamic Data Bases. Intelligent Information Systems, 1999:61.
  • 3Carter C L,Hamilton H J.Efficient Attribute-oriented Algorithms for Knowledge Discovery from Large Database.IEEE Trans.Knowledge and Data Eng., 1998,10(2): 193-208.
  • 4Fukuda T.Data Mining with Optimized 2-Dimensional Association Rules.ACM Trans.on Database Systems,2001,26(2).
  • 5Hiriji K K.Exploring Data Mining Implementation.Communications of the ACM,2001,44(7).
  • 6R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Int'l Conf. Management of Data, Washington, D. C., 1993.
  • 7Han J, Kamber. MData Mining: Concepts and Techniques.Beijing: High Education Press, 2001.
  • 8B. Goethals. Survey of frequent pattern mining. Helsinki Institute for Information Technology, Technical Report, 2003.
  • 9R. Agrawal, R. Srikant. Fast algorithm for mining association rules. The 20th Int'l Conf. VLDB, Santiago, Chile, 1994.
  • 10M. Houtsma, A. Swami. Set-oriented mining for association rules in relational databases. In: Yu P., Chen A, eds. Proc. Int'l Conf. Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1995. 25~33.

共引文献87

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部