期刊文献+

一类具时滞和阶段结构的捕食模型的稳定性与Hopf分支 被引量:6

Hopf bifurcation of a stage-structured predator-prey model with time delay
下载PDF
导出
摘要 研究一类具有时滞和阶段结构的捕食模型的稳定性和Hopf分支的存在性问题.通过分析特征方程,得到了正平衡点局部稳定的条件.同时,应用中心流形定理和规范型理论,得到了确定Hopf分支方向和分支周期解的稳定性的计算公式.最后对所得理论结果进行了数值模拟. A stage-structured predator-prey model with time delay and Holling type Ⅲ functional response is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulas are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.
作者 田晓红 徐瑞
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第3期285-292,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10671209)
关键词 捕食系统 时滞 功能性反应 HOPF分支 稳定性 predator-prey system time delay functional response Hopf bifurcation stability
  • 相关文献

参考文献8

  • 1陈兰荪,宋新宇,陆征一.数学生态学系统与研究方法[M].成都:四川科学技术出版社,2003.
  • 2桂占吉.生物动力学系统与计算机仿真[M].北京:科学出版社,2005.
  • 3徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 4Xu Rui, Ma Zhien. The effect of stage-structure on the premanence of a predator-prey system with time delay[J]. Appl Math Comput, 2007, 189: 1164-1177.
  • 5Zhang X, Chen L, Neumann Avidan U. The stage-structured predator-prey model and optimal harvesting policy[J]. Math Biosci, 2000, 168: 201-210.
  • 6Cooke K, Grossman Z. Discrete delay, distributed delay and stability switches[J]. J Math Anal Appl, 1982, 86: 592-627.
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. New York: Academic Press, 1993.
  • 8Hassard B, Kazarinoff D, Wan Y. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.

二级参考文献15

  • 1Goh B S. Global stability in two species interactions. J Math Biol, 1976, 3(3-4): 313-318
  • 2Hastings A. Global stability in two species systems. J Math Biol, 1978, 5(4): 399-403
  • 3He X Z. Stability and delays in a predator-prey system. J Math Anal Appl, 1996, 198(2): 355-370
  • 4Aièllo W G, Freedman H I. A time delay model of single-species growth with stage structure. Math Biosci,1990, 101(2): 139-153
  • 5Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J Appl Math, 1992, 52(3): 855- 869
  • 6Wang W, Chen L. A predator-prey system with stage structure for predator. Comput Maria Appl, 1997,33(8): 83 -91
  • 7Magnusson K G, Destabilizing effect of cannibalism on a structured predator-prey system. Math Biosci,1999, 155(1): 61-75
  • 8Zhang X, Chen L, Neumann A U. The stage-structured predator-prey model and optimal havesting policy.Math Biosci, 2000, 168(2): 201- 210
  • 9Ma Z. Mathematical Modeling and Research in Ecology. Hefei: Anhui Educational Publishing House,1996. 25- 26
  • 10Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics 20. Heidelberg, Springer, 1979. 13-70

共引文献30

同被引文献31

  • 1徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 2邓祥周,田立新,段希波.能源价格的动态模型及分析[J].统计与决策,2007,23(2):9-10. 被引量:15
  • 3ALELLO W G,FREEDAM H I.A time-delay Model of Single-species Growth with Stage Structure[J].Math.Biosci.,1990,101:139-153.
  • 4MAGNUSSON J G.Destabilizing Effect of Cannibalism on aStructured Predator-prey System[J].Math.Biosci.,1999,155:61-75.
  • 5WANG W D,CHEN L S.A Predator-prey System with Stage-structure for Predator[J].Comp.Math.Appl.,1997,33:83-91.
  • 6XIAO Y N,CHEN L S.Global Stability of a Predator-preySystem with Stage Structure for the Predator[J].Acta Mathemat-ica Sinica,English Series.,2003,2:1-11.
  • 7FREEDAM H I,SREE H R V.The Trade-off between MutualInterference and Time Lags in Predator-prey Systems[J].BullMath Biol.,1983,45:991-1004.
  • 8Xiao Yan Ni, Chen Lan Sun. Global stability of a predator-prey system with stage structure for the predator[J]. Acta Mathematica Sinica, English Series, 2003, 19(2):1-11.
  • 9Song Xin Yu, Cai Li Ming, Neumann A U. Ratio-dependent predator-prey system with stage structure for prey[J]. Discrete and Continuous Dynamical System-Series B, 2004, 3(4):747-758.
  • 10Kar T K, Pahari U K. Modeling and analysis of a prey-predator system with stage-structure and harvest- ing[J]. Nonlinear Analysis, 2007, 2(8):601-609.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部