期刊文献+

低磁雷诺数不可压缩磁流体槽道湍流电场相关特性的直接数值模拟 被引量:3

原文传递
导出
摘要 对低磁雷诺数近似下不可压缩磁流体槽道湍流进行了直接数值模拟(DNS),给出了速度-电场、电场-电场相关特性,并与Kenjere-Hanjalic提出的模型(K-H模型)进行了逐项对比.通过K-H模型与DNS所得到的数据对给定外部驱动力、不同磁场布置形式下磁场对湍流抑制作用的机理进行了对比分析.结果表明,K-H模型可以对速度-电场相关项的大部分分量进行合理的预估.通过数值模拟还发现,磁场沿流向及展向布置下湍动能降低的主要机理是耗散性的磁流体源项;而当磁场沿法向布置时,湍动能降低的主要机理是洛仑兹力对底层流动的加速,从而降低雷诺应力,令湍动能方程中生成项减小,导致湍动能减小.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2010年第9期1144-1155,共12页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:10272105 10602006)
  • 相关文献

参考文献13

  • 1吕浩宇,李椿萱,董海涛.三维超声速磁流体发生器的流动特性[J].中国科学(G辑),2009,39(3):435-445. 被引量:10
  • 2Hartmann J, Lazarus F. Hg-Dynamics II: Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd, 1937, 15:1-45.
  • 3Noguchi H. Direct Numerical Simulation of Liquid Metal MHD Turbulence. Dissertation for the Master Degree. Tokyo: The University of Tokyo, 1994.
  • 4Noguchi H, Kasagi N. Direct numerical simulation of liquid metal MHD turbulent channel flows. Preprint of JSME, No. 940-53, 1994. 365 - 366.
  • 5Lee D, Choi H. Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number. J Fluid Mech, 2001, 439:367-394.
  • 6Krasnov D, Zikanov O, Schumacher J, et al. Magnetohydrodynamic turbulence in a channel with spanwise magnetic field. Phys Fluids, 2008, 20:095105.
  • 7Smolentsev S, Abdou M, Morley N, et al. Application of the k-c model to open channel flows in a magnetic field. Int J Eng Sci, 2002, 40: 693-711.
  • 8Kenjeres S, Hanjalic K. On the implementation of effects of Lorentz force in turbulence closure models. Int J Heat Fluid Flow, 2000, 21: 329-337.
  • 9Kenjeres S, Hanjalic K, Bal D. A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows. Phys Fluids, 2004, 16:1229-1241.
  • 10Karniadakis G E, Israeli M, Orszag S A. High-order splitting methods for the incompressible Navier-Stokes equations. J Comput Phys, 1991, 97:414-443.

二级参考文献15

  • 1Gurijanov E P, Harsha P T. AJAX: New directions in hypersonic technology. AIAA 96-4609, 1996
  • 2Kuranov A L, Sheikin E G. Magnetohydrodynamic control on hypersonic aircraft under "ajax" concept. J Spacec Roc, 2003, 40(2): 174-182
  • 3Litchford R J, Cole J w, Bityurin V A, et al. Thermodynamic cycle analysis of magnetohydrodynamic-bypass hypersonic airbreathing engines. J Prop Power, 2001, 17(2): 477-480
  • 4Lee C, Lu H. Quasi-one-dimensional parametric study for MHD generator in MHD bypass scramjet system. AIAA 2007-0644, 2007
  • 5Macheret S O, Shneider M N, Miles R B. Electron beam generated plasmas in hypersonic MHD channels. AIAA J, 2001, 39(6): 1127 -1138
  • 6Macheret S O, Shneider M N, Miles R B. MHD power extraction from cold hypersonic air flows with external ionizers. J Prop Power, 2002, 18(2): 424- 431
  • 7HuntJ C R. Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech, 1960, 21:577--590
  • 8Walker J S. Liquid-metal MHD flow in a thin conducting pipe near the end of a uniform magnetic field. J Fluid Mech, 1986, 167:199-217
  • 9Steal A. Numerical simulation of liquid-metal MHD flows in rectangular ducts. J Fluid Mech, 1990, 216:161-191
  • 10Tezer-Sezgin M, Aydin S H. Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Bound Elem, 2006, 30:411-418

共引文献9

同被引文献9

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部