期刊文献+

一种采用免疫原理的恶意软件检测方法 被引量:1

Immune-based Method for Malware Detection
下载PDF
导出
摘要 针对现有恶意软件检测方法的不足,提出一种采用免疫原理的恶意软件检测方法。该方法采用程序运行时产生的IRP请求序列作为抗原,定义系统中的正常程序为自体、恶意程序为非自体,通过选定数量的抗体,采用人工免疫原理识别非自体。实验结果表明,此方法在恶意软件的检测方面具有较高的准确率,且误报和漏报率较低。 In order to solve the problems existing in the current malware detection,a new malware detection method based on immune was proposed.In this method,the IRP request sequences created by running programs are regarded as antigen,and the normal programs in operating system are self,malwares are nonself.The nonself will be detected by some antibodies using artificial immunology.Experimental results reveal that this model has high true positive rate,and low false positive and false negative rate.
出处 《计算机科学》 CSCD 北大核心 2010年第9期161-163,217,共4页 Computer Science
基金 国家技术创新基金项目(08C26214411198) 粤港关键领域重点突破项目(2008A011400010) 广州市创新基金项目(2007V41C0301)资助
关键词 人工免疫 恶意软件 恶意软件检测 反病毒 Artificial immune Malware Malware detection Anti-virus
  • 相关文献

参考文献11

  • 1Jerne N K.Towards a network theory of the immune system[J].Annual Immunology,1974,125C(1/2):373-389.
  • 2Forrest S,Perelson A S,Allen L,et al.Self-nonself discrimination in a computer[C] ∥The IEEE Symposium on Research in Security and Privacy.Oakland:IEEE,1994:202-212.
  • 3Forrest S,Hofmeyr S A,Somayaji A.Computer immunology[J].Communications of the ACM,1997,40(10):88-96.
  • 4Harmer P K,Williams P D,Gunsch G H,et al.An artificial immune system architecture for computer security applications[J].IEEE Transactions on Evolutionary Computation,2002,6(3):252-280.
  • 5Dhaeseleer P,Forrest S,Helman P.An immunological approach to change detection:algorithms,analysis and implications[C] ∥IEEE Symposium on Security and Privacy.Oakland:IEEE,1996:110-119.
  • 6Kephart J O,Sorkin G B,Swimmer M.An immune system for cyberspace[C] ∥IEEE International Conference on Systems,Man,and Cybernetics.Orlando:IEEE,1997:879-884.
  • 7Forrest S,Hofmeyr S A,Somayaji A,et al.A sense of self for unix processes[C] ∥IEEE Symposium on Security and Privacy.Oakland:IEEE,1996:120-128.
  • 8Lee H,Kim W,Hong M P.Biologically inspired computer virus detection system[C] ∥1st International Workshop on Biologically Inspired Approaches to Advanced Information Technology.Lausanne:Springer,2004:153-165.
  • 9LI Tao.Dynamic detection for computer virus based on immune system[J].Science in China(Series F),2008,51(10):1475-1486. 被引量:21
  • 10Hofmeyr S,Forrest S.Architecture for an artificial immune system[J].Evolutionary Computation,2000,8(4):443-473.

二级参考文献10

  • 1Butler D.Computer security: who’s been looking at your data[].Nature.2002
  • 2Li T.Computer Immunology[]..2004
  • 3Cheng S L,Tan R,Xong W L, et al.Computer Virus and its Protection Techniques[]..2004
  • 4Kephart J O,Arnold W C.Automatic extraction of computer virus signatures[].Proc of the Fourth International Virus Bulletin Conference.2001
  • 5Sheng J,Xie S Q.The Theory of Probability and Mathematical Statistics[]..1989
  • 6Pu J,Ji J F,Yi L Z, et al.User Manual for MATLAB Version 6.0[]..2002
  • 7Balthrop J,Forrest S,Newman M E J,et al.Technological networks and the spread of computer viruses[].Science.2004
  • 8P D’ haeseleer.An Immunological Approach to Change Detection: Theoretical Results[].Proc of the th IEEE Computer Security Foundations Workshopg.1996
  • 9Perelson A S,Weisbuch G.Immunology for physicists[].Reviews of Modern Physics.1997
  • 10Forrest S,Perelson A S,Allen L,et al.Self-nonself discrimination in a computer[].Proceedings of the IEEE Symposium on Research in Security and Privacy.1994

共引文献20

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部