期刊文献+

一种结合共同邻居和用户评分信息的相似度算法 被引量:13

Similarity Algorithm Based on User's Common Neighbors and Grade Information
下载PDF
导出
摘要 随着互联网的发展,推荐系统逐步得到广泛应用,协同过滤(CF)是其中运用得最早、最成功的技术之一。CF首先根据用户间的相似度,找出每个用户的近邻;然后根据目标用户近邻的评分预测目标用户的评分;最后把预测评分较高的项目推荐给目标用户。因此相似度计算方法直接关系到预测结果的准确性,对推荐起着至关重要的作用。目前,学者们已从不同的角度提出了各种各样的相似度计算方法,其中共同邻居算法(common-neighbors)是一种简单有效的方法。但此法仅考虑了两用户间的共同邻居数,忽略了用户的具体评分信息。针对这个问题对共同邻居算法进行了改进,同时考虑了共同邻居数和用户的评分信息。实验结果表明,改进的共同邻居算法在一定程度上可提高评分预测的准确性。 With the rapid growth of Internet,recommender systems have been used in many fields,and collaborative filtering(CF) is one of the earliest and the most successful ones.CF method usually identifies the neighborhood of each user based on similarity between two users; then predicts items' rating by integrating ratings of target user's neighbors,and lastly those items with higher predicted score are recommended to target user.So similarity plays an important role and affects the accuracy of the prediction.Up to now,various similarity measures have been proposed by resear-chers from different aspect.And common-neighbor algorithm is a simple and efficient method.However,common-neighbor algorithm just considers the number of common objects scored by two users,doesn't consider the user's grade information.In this paper,an improved algorithm based on common-neighbor and user's grade information was proposed.Experimental results indicate that improved common-neighbor algorithm can obtain rather good predicting results.
出处 《计算机科学》 CSCD 北大核心 2010年第9期184-186,204,共4页 Computer Science
基金 国家高技术研究发展计划(编号:2007AA01Z440) 国家自然科学基金(编号:60973069 90924011) 四川省应用技术研究与开发项目支撑计划(编号:2008GZ0009) 中国博士后科学基金资助项目(编号:20080431273)资助
关键词 协同过滤 共同邻居 相似度算法 评分信息 Collaborative filtering Common-neighbors Similarity algorithm Grade information
  • 相关文献

参考文献10

  • 1Adomavicius G,Tuzhilin A.Expert-driven validation of rule-based user models in personalization applications[J].Data Mi-ning and Knowledge Discovery,2001,5(1/2):33-58.
  • 2Adomavicius G,Tuzhilin A.Toward the next generation of reco-mmender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transaction on Knowledge and Data Engineering,2005,17(6):734-749.
  • 3梅田望夫.网络巨变元年-你必须参加的大未来[M].先觉:先觉出版社,2006.
  • 4Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C] //The 14th Confe-rence on Uncertainty in Artificial Intelligence.1998:43-52.
  • 5Liu Jie,Shang M S,Chen D B.Personal recommendation based on weighted bipartite networks[C] ∥The 6th International Conference on Fuzzy Systems and Knowledge Discovery.2009,8:134-137.
  • 6Resnick P,Iacovou N,Suchak M,et al.GroupLens:An open architecture for collaborative filtering of Netnews[C] ∥Proceeding of ACM 1994 Conference on Computer Supported Cooperative Work.1994:175-186.
  • 7Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithm[C] ∥The 10th Intering World Wide Web Conference.2001:285-295.
  • 8Sφrensen T.A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish commons[J].Biologiske Skrifter,1948,5:1-34.
  • 9Leicht E A,Holme P,Newman M E J.Vertex similarity in networks[J].Physical Review E73,2006:026120.
  • 10Shang M S,Jin C H,Zhou T,et al.Collaborative filtering based on multi-channe diffusion[J].Physica A,2009,388(23):4867-4871.

共引文献1

同被引文献118

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部