期刊文献+

用基于平行坐标图的可视化人机交互技术提取EEG信号特征的方法 被引量:4

Feature extraction of EEG signals using the visualized BCI technique based on parallel coordinates plot
下载PDF
导出
摘要 应用可视化人机交互(HCI)方法进行了脑电图记录(EEG)信号特征提取技术的研究。该研究一方面在脑机接口(BCI)技术领域提出了一种新的特征提取技术方法,同时通过可视化人机交互的专家智慧参与,实现了面向对象领域和面向数据模式识别的有效结合,克服了单一机器学习的局限性。首先介绍了多元图表示的基本理论,然后提出了基于平行坐标图的可视化人机交互技术,接着进行了单通道和多通道EEG信号特征提取的可视化人机交互技术的研究,最后采用第二届国际脑机接口竞赛中的数据集Ⅳ进行了数据实验。实验表明,本文提出的方法的识别结果优于实验数据集国际竞赛最优结果和文献报道中的当前国际最优结果。 The study on the techniques for extraction of electroencephalography (EEG) singnal features was conducted based on human-computer interaction (HCI). It proposes a new way of feature extraction in the technical field of brain-computer interface (BCI), and through the expert intelligence endeavor to feature extraction by the HCI based on graphical presentation of multivariate data, effectively realized the combination of data-oriented pattern recognition and object-oriented domains, and overcame the obstacles of the only mechine learning. It firstly introduced the visualized HCI technique based on graphical presentation of multivariate data, then studied the visualized feature extraction techniques for single channel and multi-channel EEG signals. The experiments were performed based on the dataset IV of the international BCI competition II. The experimental results were very superior to that of the intemational BCI competition II and the previously reported optimal classification performance of the international compared baseline methods. It proved the validity of the research methods in this paper.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第5期518-523,共6页 Chinese High Technology Letters
基金 国家自然科学基金(60605006) 河北省教育厅科研计划自然科学重点项目(ZH200802) 河北省科技支撑计划项目(072135220) 燕山大学博士基金(2010498)
关键词 脑机接口(BCI) 模式识别 特征提取 可视化 人机交互(HCI) 平行坐标图 brain-computer interface (BCI), pattern recognition, feature extraction, visualized, human-computer interaction (HCI), parallel coordinates plot
  • 相关文献

参考文献12

  • 1Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-computer interfaces for communication and control.Clinical Neurophysiology,2002,113(6):767-791.
  • 2Gao X R,Xu D F,Cheng M,et al.A BCI-based environmental controller for the motion-disabled.IEEE Trans Neural Syst Rehab Eng,2003,11(2):137-140.
  • 3杨帮华,颜国正,严荣国.脑-机接口研究进展[J].中国医疗器械杂志,2005,29(5):353-357. 被引量:6
  • 4Mehrdad F,Ali B,Ward R K,et al.EMG and EOG artifacts in brain computer interface systems:A survey.Clinical Neurophysiology,2007,118(3):480-494.
  • 5Wu T,Yan G Z,Yang B H,et al.EEG feature extraction based on wavelet packet decomposition for brain computer interface.Measurement,2008,41(6):618-625.
  • 6Shangming Zhou,John Q G,Francisco S.Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface.Information Sciences,2008,178(6):1629-1640.
  • 7Ricardo G O.Pattern analysis for machine olfaction:a review.IEEE Sensors Journal,2002,2(3):189-202.
  • 8高海波.基于多元图图形基元和特征基元表示的模式识别方法研究:[博士学位论文] .秦皇岛:燕山大学电气工程学院,2009.85-93.
  • 9Fraunhofer.The data set IV of BCI competition II.http://ida.first.fraunhofer.de/projects/bci/competitionii /berlindesc.html:Fraunhofer FIRST,2010.
  • 10Gao H B,Hong W X,Cui J X,et al.Pattern recognition of multivariate information based on non-statistical techniques.In:Proceedings of 2008 IEEE International Conference on Information and Automation,Zhangjiajie,China,2008.697-702.

二级参考文献25

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2J.R. Wolpaw, et al. Brain-computer interfaces for communication and control.Clin. Neurophysiol. 2002,113(6): 767-791
  • 3Steven G. Mason, et al. A general framework for brain - computer interface design. IEEE Trans. Neural Syst. Rehab. Eng., 2003,11(1): 70-85
  • 4Jose del R.Millan, et al. Adaptive brain interface-ABI:simple features,simple neural network, complex brain-actuated device. Special Session DSP in Though Understanding. 2002. 297-300.
  • 5Brett D.Mensh, et al. BCI competition 2003-data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng., 2004, 51(6): 1052-1056.
  • 6Benjamin Blankertz, et al. The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng., 2004,51(6): 1044-1051
  • 7Touradj Ebrahimi, et al. Brain-computer interface in multimedia communication.IEEE Signal Processing Magzine. 2003, 20(1): 14-24
  • 8J.R. Wolpaw. Brain-computer interface: signals, methods, and goals. Proceedings of the 1st international IEEE EMBS Conference on Neural Engineering, 2003.2-22
  • 9Dondhin E, et al. The mental prosthesis: assessing the speed of a P300-based braincomputer interface. IEEE Trans. Rehab. Eng., 2000,8(2): 174-179
  • 10Matthew Middendorf, et al. Brain - computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehab. Eng. 2000, 8(2): 211-214.

共引文献5

同被引文献42

  • 1王志宇,王宏,李一娜,王旭.小波相关分析在脑-计算机接口系统中的研究[J].仪器仪表学报,2006,27(4):358-362. 被引量:2
  • 2何庆华,吴宝明,彭承琳,王禾,钟渝.基于小波和神经网络的视觉诱发电位识别方法[J].仪器仪表学报,2007,28(6):1003-1006. 被引量:10
  • 3Berger H. Uber das Electrenkephalogramm des Menchen. Arch Psychiat Nervenkr, 1929,87:527-570.
  • 4Adrian E D, Matthews B H C. The interpretation of poten- tial waves in the cortex. J Physiol,1934,81 (4) :440-471.
  • 5Macalusol E, Driver J. Multisensory spatial interactions : a window onto functional integration in the human brain. TRENDS in Neurosciences ,2005,28(5) :264-271.
  • 6Wesley T K, Anderson A, Edward P. Automated diagnosis of epilepsy using EEG power spectrum, Epilepsia,2012,53 (11 ) :E189-E192.
  • 7Wang Y B, Veluvolu K C. Adaptive estimation of EEG for subject-specific reactive band identification and improved ERD detection. Neuroscience letters, 2012,528 ( 2 ) : 137- 142.
  • 8Gadhoumi K, Jean-Marc Lina, Gotman J. Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clin- ical Neurophysiology ,2012 ,123 ( 10 ) : 1906-1916.
  • 9程龙龙,綦宏志,明东等.基于小波熵的想象动作电位识别研究.见:2007年中国生物医学年会中国生物医学工程进展论文集,西安,2007.1424-1427.
  • 10Durka P J, Zygierewicz J, Klekowicz H. On the statistical significance of event-related EEG desynchronization and synchronization in the time-frequency plane. IEEE Trans- actions on Biomedical Engineering, 2004,51 (7) : 1167- 1175.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部