期刊文献+

一种快速移动对象轨道聚类算法

A fast moving objects trajectory clustering algorithm
下载PDF
导出
摘要 针对已有轨道聚类(TRACLUS)算法的线段聚类模块需要对划分后的每条线段进行邻域查询的问题,将取样技术引入轨道聚类,提出一种快速移动对象轨道聚类(FTCS)算法。FTCS算法根据基于极大连通子图的合并原理,对核心线段的Eps邻域以及与该Eps邻域相重叠的所有轨道聚类进行合并,避免了TRACLUS算法中核心线段Eps邻域内线段的不必要邻域查询操作。在真实和合成轨道数据集上的大量实验结果表明,FTCS算法显著降低了邻域查询操作次数,在保持TRACLUS算法轨道聚类质量的同时,成倍提高了轨道聚类的时间效率。 Considering that the existing trajectory clustering (TRACLUS) algorithm needs neighborhood query for each line segment after partition, the paper introduces a sampling technique into trajectory clustering and proposes a fast moving objects trajectory clustering (FFCS) algorithm. The FTCS algorithm merges the Eps-neighborhood of core line segments with trajectory clusters that intersect with those Eps-neighborhoods according to the merging principle based on maximum connected subgraph, so it avoids the TRACLUS algorithm's unnecessary neighborhood query of line segmems that lie in Epsneighborhood of core line segments. The experimental results on real and synthetic trajectory data demonstrate that the FTCS algorithm reduces the number of neighborhood query remarkably and improves the efficiency of trajectory clustering while keeps the quality of trajectory clustering.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第1期99-105,共7页 Chinese High Technology Letters
基金 863计划(2007AA01Z404)资助项目
关键词 数据挖掘 聚类 轨道 邻域 密度 data mining, clustering, trajectory, neighborhood, density
  • 相关文献

参考文献3

二级参考文献23

  • 1于勇前,赵相国,王国仁,陈衡岳.一种基于密度单元的自扩展聚类算法[J].控制与决策,2006,21(9):974-978. 被引量:7
  • 2Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 3Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 4Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 5Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 6Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 7Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 8Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 9Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.
  • 10Sheikholeslami G,Proceedings of the 2 4th VL DB Conference,1998年,428页

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部