期刊文献+

参数化CAD中参数有效范围的算法研究

Research on an algorithm for solving valid range of parameters in parametric CAD
下载PDF
导出
摘要 为了解决在参数化CAD系统中由于参数赋值不合理而导致的几何实体重建失败的问题,提出了确定一类二维参数化CAD模型中参数有效范围的代数算法。该算法可以实时求解所有简单多边形中距离约束参数的有效取值范围,并利用几何变换简化求解规模,提高求解效率。研究结果表明,该算法提供的有效取值范围内的任一赋值,均可保证重建后几何实体的拓扑形状不发生改变,在一定程度上提高了参数化CAD软件的设计效率和人机交互的智能化水平。同时对算法复杂度进行了分析,该算法的复杂度为O(n^2)。 To resolve the problem that in parametric CAD systems, unreasonable parameter values in a parametric model often result in an improper shape of a geometric object, the paper proposes an algebraic algorithm for determining the valid range of parameter values in certain 2-dimensional parametric CAD models. This algorithm can solve the valid value range of distance constraint parameters in all simple polygons in real time, and make use of the geometric transformation to sim- plify the solving scale and improve the solving efficiency. The result of the study shows that all values within the valid range provided by this algorithm can ensure that the topological shape of a geometric object does not change after recon- struction, and to some extent, this algorithm can improve the efficiency of parametric CAD software design and the intel- lectual level of human-computer interaction. The analysis shows the complexity of this algorithm is O(n2).
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第3期259-263,共5页 Chinese High Technology Letters
基金 863计划(2009AA062700)资助项目
关键词 参数化CAD 参数有效范围 几何变换 参数化模型 parametric CAD, valid parameter value, geometric transformation, parmnetric model
  • 相关文献

参考文献7

  • 1蒋鲲,朱长才,高小山.参数化CAD中参数的有效范围[J].计算机辅助设计与图形学学报,2003,15(8):1016-1020. 被引量:12
  • 2Hoffmann C M,Kim K J.Towards valid parametric CAD models.Computer-Aided Design,2001,33:81-90.
  • 3Arinyo R J,Mata N.Applying constructive geometric constraint solvers to geometric problems with interval parameters.Nonlinear Analysis,2001,47:213-224.
  • 4Van der Meiden H A,Bronsvoort W F.A constructive approach to calculate parameter ranges for systems of geometric constraints.Computer-Aided Design,2006,38:275-283.
  • 5Latham R S,Middleditch A E.Connectivity analysis:A tool for processing geometric constraint.Computer-Aided Design,1994,28 (11):917-928.
  • 6Fudos I,Hoffmann C M.A graph-constructive approach to solving systems of geometric constraints.ACM Transactions on Graphics,1997,16(2):179-216.
  • 7高小山,黄磊东,蒋鲲.求解几何约束问题的几何变换法[J].中国科学(E辑),2001,31(2):182-192. 被引量:6

二级参考文献21

  • 1陈立平,涂重斌,罗浩,周济.一种新的面向参数化绘图的约束管理技术[J].软件学报,1996,7(7):394-400. 被引量:6
  • 2Collins G E. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition [M]. Lecture Notes in Computer Science 33, Berlin: Springer-Verlag, 1975. 134183.
  • 3Joan-Arinyo R, Mata N, Soto A. A constraint-solving based approach to analyze 2D geometric problems [A]. In:Proceedings of Solid Modeling' 01 [C]. New York: ACM Press, 2001. 11--17.
  • 4Hoffmann C M, Kim K J. Towards valid parametric CAD models [J]. Computer-Aided Design, 2001, 33(1): 81--90.
  • 5Gao X S, Chou S C. Solving geometric constraint systems I : A global propagation approach [J]. Computer-Aided Design,1998, 30(1): 47--54.
  • 6Bouma W, Fudos I, Hoffmann C, et al. A geometric constraint solver [J]. Computer-Aided Design, 1995, 27(6): 487--501.
  • 7Fudos I, Hoffmann C. A graph-constructive approach to solving systems of geometric constraints [J]. ACM Transactions on Graphics, 1997, 16(2): 179--216.
  • 8Latham R S, Middleditch A E. Connectivity analysis: A tool for processing geometric constraint [J]. Computer-Aided Design,1994, 28(11): 917--928.
  • 9Chan I W, Friesen D K. Parallel algorithm for segment visibility reporting [J]. Parallel Computing, 1993, 19(9): 973--978.
  • 10Gao X S,Automated Deduction in Geometry,1999年,232页

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部