摘要
研究丢番图方程x^y+y^z+z^x=0的可解性,并求该方程的所有整数解.本文利用初等方法及整数的整除性质研究这一问题,获得了彻底解决.即就是证明了方程x^y+y^z+z^x=0有且仅有六组整数解(x,y,z)=(-2,1,1),(1,-2,1),(1,1,-2),(1,-1,-2),(-1,-2,1),(-2,1,-1)
The main purpose of this paper is using the elementary method and the divisible properties of the integers to study this problem, and solve it completely. That is, we shall prove that the Diophantine equation x^y + y^z + z^x = 0 has and only has six integer solutions. They are:(x,y,z) = (-2,1,1), (1,-2,1), (1,1,-2), (1,-1,-2), (-1,-2,1), (-2,1,-1).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第5期853-856,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10671155)
西北大学研究生自主创新基金(08YZZ30)
关键词
初等方法
不定方程
整数解
diophantine equation
elementary method
integer solutions