期刊文献+

一致Fredholm指标算子及广义(ω′)性质 被引量:3

Consistent Fredholm and Index Operators and Generalized Property(ω′)
原文传递
导出
摘要 本文给出了一致Fredholm指标算子的定义及判定,同时定义了Weyl型定理的一种新变化:广义(ω')性质.根据一致Fredholm指标性质定义出一种新的谱集,通过该谱集给出了Hilbert空间上有界线性算子满足广义(ω')性质的充要条件,并且研究了广义(ω')性质的摄动,还研究了算子的亚循环性和广义(ω')性质之间的关系. In this note, we define a class operators called consistent Fredholm and index operators and give a complete characterization of this class operators, also, we define the generalized property (ω'), a variant of Weyl's theorem. By means of the new spectrum defined in view of the property of consistence in Fredholm and index, we establish for a bounded linear operator T defined on a Hilbert space the sufficient and necessary conditions for which the generalized property (ω') holds. We also study the stability of generalized property (ω') under perturbations. In addition, the relation between the generalized property (ω') and hypercyclicity is discussed.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第5期953-962,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10726043) 教育部新世纪优秀人才支持计划资助项目 陕西师范大学中央高校基本科研业务费资助项目
关键词 广义(ω')性质 一致Predholm指标算子 generalized property (ω') consistent Fredholm and index operators spectrum
  • 相关文献

参考文献17

  • 1Gong W. B., Han D. G., Spectrum of the products of operators and compact perturbations the American Mathematical Society, 1994, 120: 755-760.
  • 2Weyl H., Uber beschrankte quadratische Formen, deren Diffcrenz vollstctig ist, Rend. Circ. 1909, 27: 373-392.
  • 3Proceedings of Mat. Palermo Harte R., Lee W. Y., Another note on Weyl's theorem, Trans. Amer. Math. Soc., 1997, 349: 2115-2124.
  • 4Rakodevic V., Operators obeying a-Wcyl's theorem, Rev. Roumaine Math. Pures Appl., 1989, 34: 915-919.
  • 5Rakodevic V., On a class of operators, Mat. Vesnik, 1985, 37: 423-426.
  • 6Berkani M., index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 2002, 130:1717-1723.
  • 7Cao X. H., Weyl spectrum of the products of operators, J. Korean Math. Soc., 2008, 45:771-780.
  • 8Berkani M., Koliha J. J., Weyl type theorems for bounded linear operators, Aeta Sci. Math. (Szeged), 2003 69: 379-391.
  • 9Taylor A. E., Theorcms on ascent, descent, nullity and defect of linear operators, Math. Ann., 1996, 163 18-49.
  • 10Dai L., Cao X. H., Sun C. H., A note on generalized property (w), Acta Mathematica Sinica 2010, 53(2): 219-226.

同被引文献18

  • 1Weyl H. 1Elber beschrankte quadratische Formen, deren Differenz vollstetig ist[ J]. Rendiconti del Circolo Matematico di Palermo, 1909, 27 : 373-392.
  • 2Harte R, Lee W Y. Another note on Weyl's theorem[ J]. Transactions of the American Mathematical Society, 1997, 349: 2115-2124.
  • 3Rako~evi~ V. On a class of operators[J]. Matematicki Vesnik, 1985, 37: 423-426.
  • 4Rako~evi~ V. Operators obeying a-Weyl's theorem[ J]. Revue Roumaine de Math6matique Pures. 1989, 34(10) : 915-919.
  • 5Berkani M. On a class of quasi-Fredholm operators[ J]. Integral Equations and Operator Theory, 1999, 34: 244-249.
  • 6Berkani M. Index of B-Fredholm operators and generalization of a Weyl theorem[ J]. Proceedings of the American Mathematical Society, 2002, 130: 1717-1723.
  • 7Cao X H. Weyl spectrum of the products of operators[ J]. Journal of the Korean Mathematical Society, 2008, 45 (3): 771-780.
  • 8Berkani M, Koliha J J. Weyl type theorems for bounded linear operators[ J]. Aeta Mathematica Seientia, 2003, 69: 359-376.
  • 9Oberai K K. On the Weyl spectrum II[J]. Illinois Journal of Mathematics, 1997, 21 : 84-90.
  • 10Taylor A E. Theorems on ascent, descent, nullity and defect of linear operators[ J]. Mathematische Annalen, 1996, 163: 18-49.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部