期刊文献+

纵向光子光锥波函数h_γ~∥(u,P^2)及其耦合常数

Longitudinal Photon Light-Cone Wave Function h_γ~∥(u,P^2) and Its Coupling
原文传递
导出
摘要 在量子色动力学(QCD)低能等效理论的框架中,利用瞬子媒质中的等效夸克传播子,在领头阶单圈水平上计算了与夸克-反夸克非局域张量流耦合的纵向光子光锥波函数hγ∥(u,P2)以及相应的耦合常数fγ∥(P2)的解析表达式,得到了包含扭度2和3贡献的光子光锥波函数hγ∥(u,P2)与夸克所分担的纵向动量份额u和光子虚度P2的关系,并考察了耦合常数fγ∥(P2)随P2的变化而变化的性状.结果表明,纵向波函数在不同虚度下都满足u1-u对称,而且相应的耦合常数与横向波函数的耦合常数在高能极限下趋于一致. In the framework of the low-energy effective theory of quantum chromodynamics,using the expression of the quark propagator in the instanton medium,the explicit forms of light-cone longitudinal photon wavefunction hγ∥(u,P2) coupled with the quark-antiquark tensor non-local current,and the corresponding coupling constant fγ∥(u,P2) are calculated on the leading one-loop level. The behavior of hγ∥(u,P2) with the fraction u of the longitudinal momentum of the photon carried by a quark,u,and with the photon vatuality P2 are exploited,and the behavior of fγ∥(u,P2) with respect to P2 is investigated as well. The result shows that the longitudinal wave function with different virtualities are symmetric with the transformation u1-u,and the coupling constants fγ∥(u,P2) are consistent with the one corresponding to the transverse wave function in the high-energy limit.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2010年第4期405-408,共4页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(10775105) 北京谱仪合作组研究基金项目 中国科学院大型科学装置开放项目
关键词 非微扰量子色动力学 低能等效理论 光子光锥波函数 耦合常数 non-perturbative quantum chromodynamics low-energy effective theory photon light-cone wave function coupling constant
  • 相关文献

参考文献1

二级参考文献35

  • 1Yu R, Liu J P and Zhu K 2006 Phys. Rev. D 73 045002.
  • 2Diakonov D 1996 Chiral Symmetry Breaking by Instantons Prepvint arXiv:hep-ph/9602375.
  • 3Shuryak E V 1993 Rev. Mod. Phys. 65 1.
  • 4Chu M C, Grandy J M, Huang S and Negele J W 1993 Phys. Rev. Lett. 70 225.
  • 5Schafer T and Shuryak EV1996 Phys. Rev. D 54 1099.
  • 6Shifman M, Vainstein A and Zakharov V 1979 Nucl. Phys.B 147 385.
  • 7Liu J P, Jin Y P and Jian Z 1993 Z. Phys, C 59 313.
  • 8't Hooft G 1976 Phys, Rev. Lett, 37 8.
  • 9't Hooft G 1976 Phys. Rev. D 14 3432.
  • 10't Hooft G 1978 Phys. Rev. D 18 2199 (Erratum).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部