期刊文献+

中文句子倾向性分析 被引量:5

Opinion analysis of the Chinese sentence
原文传递
导出
摘要 针对句子的倾向性进行判断,采用SentiWordNet构建中文倾向性词表,通过剔除停用词等降低句子向量的维数,以此来提高句子向量化速度,然后利用支持向量机分类器进行句子倾向性判断,最后提出两种新的置信度计量方法对倾向性句子进行排序.实验结果表明,构建的识别系统在一定程度上能有效识别倾向性句子. To judge the sentence' s opinion, we adopt SentiWordNet to build Chinese opinioned vocabulary, eliminate stop words to reduce the dimension of the sentence vector, use this method to enhance the speed of structuring sentence' s vector, apply support vector machine (SVM) classifier to determine whether the sentence having opinion, propose two new methods of measuring confidence and sort the opinioned sentences by the confidence score. The experimental result shows that our system can effectively detect opinion sentences in some extent.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期504-508,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省科技创新平台资助项目(2009J1007) 福建省教育厅科研资助项目(JA04161) 福建省发展改革委员会资助项目(SX2004-29)
关键词 倾向性 中文句子 识别 置信度 opinion Chinese sentence detection confidence
  • 相关文献

参考文献14

  • 1Wiebe J. Learning subjective adjectives from corpora[C] // Proceedings of the 17 National Conference on Artificial Intelli- gence. Menlo Park: AAAI Press, 2000 : 735 - 740.
  • 2Miller G A. Nouns in WordNet: a lexieal inheritance system[J]. Int J of Lexicography, 1990(4) : 245 -264.
  • 3Turney P D, Littman M L. Measuring praise and criticism inference of semantic orientation from association[J]. ACM Trmisactions on Information Systems, 2003, 21 (4) : 315 -346.
  • 4Pang B, Lee L, Vaithyanathan S. Thmnbs up? sentiment classification using machine learning techniques [ C ] //Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2002:79 -86,.
  • 5Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [ C ] //Proceedings of ACL'02. 2002:417-424.
  • 6Gamon M, Aue A. Automatic identification of sentiment vocabulary exploiting: low association with known sentiment terms [ C ] //Proceedings of the ACL - 05 Workshop on Feature Engineering for Machine Learning in NLP. 2005 : 57 - 6d.
  • 7Fei Z C, Liu J, Wu G F. Sentiment classification using phrase patterns [ C ] //Proceeding of the Fourth International Cmfference on Computer and Information Technology. 2004 : 1 147 - 1 157.
  • 8Ye Q, Shi W, Li Y J. Sentiment classification for reviews: comparison between SVM and semantic approaches [ C ] // The Fourth International Conference on Machine and Cybernetics. Guangzhou: [ s. n. ], 2005:2 341 -2 346.
  • 9Ye Q, Shi W, Li Y J. Sentiment classification for movie reviews in Chinese by improved semantic oriented approach[ C]//Proceedings of the 39th Hawaii International Conference on System Sciences, 2006 : 53 - 60.
  • 10朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326

二级参考文献14

  • 1林晓帆,Proc of ICDAR’97,1997年
  • 2陈友斌,博士学位论文,1997年
  • 3刘今晖,博士学位论文,1997年
  • 4边肇祺,模式识别,1992年
  • 5Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 6Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 7Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 8Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 9Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 10K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.

共引文献337

同被引文献60

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部