摘要
提出了一种机器人队形矩阵的标识方法,设计了维数更少的状态空间.通过分析不同队形对围捕的利弊,设计了状态评价及强化函数,减少了由于感知区域划分不精细等因素对学习结果合理性的影响.通过仿真实验,验证了方法的可行性,并对存在问题进行了分析.
A formation matrix,which is presented to identify the positions of the mobile robots and state space with lower dimension,is constructed. By analyzing the merit and demerit of various formations,state criterion and reinforcement function are provided. The effect on the learning result owing to uncertain partition of sensed area is weakened. Simulation experiment shows that the presented approach is feasible. Finally,some deficiencies are analyzed.
出处
《北京工业大学学报》
EI
CAS
CSCD
北大核心
2010年第8期1031-1036,共6页
Journal of Beijing University of Technology
基金
国家自然科学基金资助项目(60774037)
教育部博士点基金资助项目(20060005014)
关键词
Q学习
队形分布矩阵
多机器人
围捕
Q-learning
formation matrix
multiple mobile robots
hunting