期刊文献+

羟基化碳纳米管检测油中溶解气体的理论分析 被引量:4

Theoretical Analysis on Hydroxylation Carbon Nanotubes Detecting Gases in Oil
下载PDF
导出
摘要 为检测油中溶解气体,应用密度泛函理论,通过计算机量子力学模拟研究了羟基侧壁修饰的(8,0)单壁碳纳米管(SWNT-OH)对变压器油中溶解气体分子C2H2、CH4、C2H4、CO、H2的吸附特性。计算得到的吸附能、净电荷转移量、作用距离及电子态密度表明,SWNT-OH对油中溶解气体分子的吸附属于物理吸附,且吸附气体分子之后,SWNT-OH的几何结构和电子结构都发生了变化。SWNT-OH对有机分子(C2H2、CH4、C2H4)的吸附能力大于对无机分子(CO、H2)的吸附能力,在有机分子中对C2H2的吸附能力最大。因此,预测SWNT-OH可以作为检测变压器油中溶解的C2H2气体的新型气体传感器。 Characteristics of hydroxyl side wall modification (8,0) single wailed carbon nanotubes (SWNT-OH) absorbing C2H2, CH4, C2H4, CO and H2 in transformer oil were investigated using the density functional theory through quantum mechanics simulation by computer. The calculated results including binding energies, net charge transfer, interacting distance and electronic density of states show that the adsorption between SWNT-OH and gas molecules in oil is physical adsorption. Besides, geometric structures and electronic properties of SWNT-OH will change after absorbing the gas molecules. The adsorption capacity of organic gas molecules is larger than that of inorganic gas molecules, and among organic gas molecules, the adsorption capacity of C2H2 is the largest, so it is predicted that SWNT-OH can serve as new gas sensors to detect C2H2 in transformer oil.
出处 《高电压技术》 EI CAS CSCD 北大核心 2010年第8期1957-1961,共5页 High Voltage Engineering
基金 国家重点基础研究发展计划(973计划)(2009CB724506) 输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512708204)~~
关键词 羟基化碳纳米管 油中溶解气体 乙炔 气体检测 密度泛函理论 气相传感器 hydroxylation carbon nanotubes dissolved gas in oil acetylene gas detection density functional theory gas sensors
  • 相关文献

参考文献17

  • 1Kong J. Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors[J].Science, 2000, 287(5453): 622- 625.
  • 2Goldoni A, LarciPrete R, Petaecia L. Single-walled carbon nanotube interaction with gases: sample contaminants and environmental monitoring [J].Am Chem Soc, 2003, 125 (37) : 11329-11333.
  • 3Li J, Lu Y, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection[J]. Nano Lett, 2003, 3(7): 929-933.
  • 4Peng S, Cho K. Ab initio study of doped carbon nanotube sensors[J].Nano Lett, 2003, 3(4): 513-517.
  • 5Bekyarova E, Davis M, Burch T, et al. Chemically functionalize single walled carbon nanotubes as ammonia sensors[J]. J Phys Chem B, 2004, 108(51): 19717-19720.
  • 6Zhao J, Lu J. Noncovalent functionalization of carbon nanotubes by aromatic molecules[J].Appl Phys Lett, 2003, 82 (21) : 3746 -3748.
  • 7Charles See Yeung, Lei Vincent Liu, Yan Alexander Wang. Adsorption of small gas molecules onto Pt doped single-walled carbonnanotubes[J]. J Phys Chem, 2008, 112(19): 7401-7411.
  • 8Zhou Z, Gao X, Yan J, et al. Enhanced lithium adsorption in single-walled carbon nanotubes by boron doping[J]. J Phys Chem B, 2004, 108(12) : 9023-9026.
  • 9Kong J, Chapline M G, Dai H J. Functionlized carbon nanotubes for molecular hydrogen sensors[J].Adc Mater, 2001, 13 (18) : 1384-1386.
  • 10Pengfei Qi, Ophir Vermesh, Mihai Grecu, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection[J].Nano Letters,2003,3(3):347-351.

二级参考文献59

共引文献80

同被引文献95

  • 1许坤,周建华,茹秋实,周茁.变压器油中溶解气体在线监测技术发展与展望[J].高电压技术,2005,31(8):30-32. 被引量:85
  • 2杨植,陈小华,刘云泉,陈宪宏,陈传盛,李文华,许龙山.碳纳米管的羟甲基化及其马来酸酐接枝研究[J].化学学报,2006,64(3):203-207. 被引量:9
  • 3余杰,周浩.变压器油气分析故障的免疫算法诊断模型[J].高电压技术,2006,32(3):49-50. 被引量:11
  • 4张云怀,肖鹏,王新强,白玉峰,贺健.多壁碳纳米管薄膜离子敏特性的研究[J].材料导报,2006,20(F05):120-121. 被引量:2
  • 5Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453) : 622-625.
  • 6Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science, 2000, 287(5459): 1801-1807.
  • 7Chen R J, Franklin N R, Kong J, et al. Molecular photodesorption from single-walled carbon nanotubes [J]. Applied Physics Letters, 2001, 79(14): 2258-2260.
  • 8Leghrib R, Felten A, Demoisson F, et al. Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes[J]. Carbon, 2010, 48(12): 3477-3484.
  • 9Kogeleschatz U. Dielectric barrier discharge: their history, discharge physics, and industrial application [J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46.
  • 10王晓静,周波.去除油烟雾及其异味的反应器:中国,ZL200910103286.5[P].2009-07-06.

引证文献4

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部