期刊文献+

空气放电等离子体中活性粒子数浓度演化规律分析 被引量:8

Evolution Law Analysis of Active Particles Density in Air Discharges Plasma
下载PDF
导出
摘要 为获得空气放电等离子体中活性粒子的演化规律,耦合了组分浓度方程和能量传递方程以及Boltzmann方程,建立了空气放电等离子体动力学模型,对空气中单次和重复放电进行了数值计算,分析了空气放电等离子体中活性粒子数浓度随电子数浓度和约化场强以及放电频率的变化趋势。结果表明,放电等离子体中的活性粒子数浓度随电子数浓度的增加而大幅增加,当电子数浓度为1.0×104cm-3时,放电产生的O原子粒子数浓度最大值约5.0×107cm-3,而当电子数浓度增加到1.0×108和1.0×1012cm-3时,O原子粒子数浓度的最大值则相应地提高到5.0×1011cm-3和5.0×1014cm-3;约化场强的提高,获得的活性粒子数浓度增加;随着驱动电压频率的增加,氧原子O的周期变化达到稳定所要经历的放电次数增加,O原子的粒子数浓度最大值随放电频率的增加而增加。 In order to get evolution law of plasma in air discharge, a kinetic model of air discharge plasma was created by coupling components number density equations, energy transfer equation, and Boltzmann equation. The model was used to calculated air single and repetitive discharges plasma, then regularity of active particles was analyzed with various electron number density , reduced electric field and discharge frequency. The results showed that, the active particles density increased with the rising of electron number density, the maximum number density of O atom is 5.0×10^7 cm 3 , 5.0× 10^11 cm^-3 and 5.0× 10^14cm^-3. When electron number density was respectively set at 1.0 × 10^4 cm, 1.0× 10 cm^-3 , and 1.0× 10^12 cm^-3 ; active particles density also increased with reduced electric field increasing. The maximum number density of O atom in repetitive discharges plasma increased when discharge frequency increasing , and it should take more time to achieve stability condition.
出处 《高电压技术》 EI CAS CSCD 北大核心 2010年第8期2041-2046,共6页 High Voltage Engineering
基金 国家自然科学基金(50776100)~~
关键词 空气放电 等离子体 活性粒子 浓度 演化 数值模拟 air discharges plasma active particles density evolution numerical simulation
  • 相关文献

参考文献14

  • 1胡征.等离子体化学基础[J].化工时刊,2000,14(1):43-47. 被引量:2
  • 2Wolfgang Niessen, Oliver Wolf, Reiner Schruft, et al. The influence of ethene on the conversion of NOx in a dielectric barrier discharge[J].J Phys D: Appl Phys, 1998, 31(5): 542-550.
  • 3Shibkov V M, Konstantinovskij R S. Kinetic model of ignition of hydrogen oxygen mixture under conditions of non-equilibrium plasma of the gas discharage[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno. NV, USA: AIAA, 2005.
  • 4Mintusov E, Serdyuchenko A, Choi I, et al. Mechanism of plasma assisted oxidation and ignition ot ethylene air flows by a repetitively pulsed nanosecond diseharge[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2008.
  • 5王丽娜,刘忠伟,朱爱民,赵国利,徐勇.介质阻挡放电等离子体中·OH和HO2·自由基的数值模拟计算[J].物理化学学报,2008,24(8):1400-1404. 被引量:8
  • 6Nighan W L. Electron energy distributions and collision rates in electrically excited N2,CO, and CO2[J].Physical Review A, 1970, 2(5): 1989- 2000.
  • 7Hyun H K, Graeiela P, Kazunori T, et al. Performance evaluation of discharge plasma process for gaseous pollutant removal[J]. Journal of Electrostatics, 2002, 55(1):25-41.
  • 8Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen oxygen mixtures[J].Plasma Sources Sci Technol, 1992, 1(3) : 207-220.
  • 9Eichwald, Yousfi M, Hennad A, et al. Coupling ot chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases[J]. J Appl Phys, 1997, 82(10): 4781-4794.
  • 10丁伟,何立明,宋振兴.常压空气介质阻挡放电的能量传递过程[J].高电压技术,2010,36(3):745-751. 被引量:18

二级参考文献58

共引文献41

同被引文献98

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部