期刊文献+

随机协同分解PSO优化的Takagi-Sugeno模糊神经网络临床路径变异处理

Variances Handling for Clinical Pathway Based on Takagi-Sugeno FNNs with Random Cooperative Decomposing PSO Optimization
下载PDF
导出
摘要 提出了一种随机协同分解粒子群(RCDPSO)优化的Takagi-Sugeno(T-S)模糊神经网络临床路径变异处理方法.在子种群的协同进化过程中,执行顺序随机确定后,选取表现最优的粒子进行分解,对表现最差的粒子进行交叉和变异,并保持子种群的总数不变,既保证了收敛速率,又增加了种群的全局搜索能力.在此基础上,加入了变异扰动机制,增加了种群的多样性,防止种群陷入局部最优.最后以骨肉瘤术前化疗临床路径变异(肝中毒)为例,进行实例验证.结果表明,在处理临床路径变异方面,RCDPSO优化的T-S模糊神经网络与其他算法优化的T-S模糊神经网络相比,预测能力较强、鲁棒性更佳,大幅度提高了临床路径变异处理的精度和效率. A variances handling method for clinical pathway was proposed,which is based on Takagi-Sugeno(T-S) fuzzy neural networks(FNNs) with random cooperative decomposing particle swarm optimization(RCDPSO).During the process of cooperative co-evolution with random execution sequence,a decomposing algorithm was adopted for the particles with the highest performance,and crossover and mutations were adopted for the particles with the worst performance.Therefore,it not only ensures the convergence rate,but also improves performance of the algorithm in global search.Moreover,the variation disturbing mechanism was introduced to strengthen the diversity of population and avoid plunging into local optimum.Finally,a case study on liver poisoning of osteosarcoma preoperative chemotherapy was used to validate the proposed method.The result demonstrates that T-S FNNs based on the RCDPSO achieves superior performance in prediction and robustness to T-S FNNs based on other algorithms,which makes variances handling of clinical pathway more effective.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第8期1120-1124,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60774103) 上海交通大学重大项目培育基金
关键词 临床路径 T-S模糊神经网络 随机协同分解粒子群优化 卡尔曼滤波算法 变异 骨肉瘤 clinical pathway T-S fuzzy neural networks(FNNs) random cooperative decomposing particle swarm optimization(RCDPSO) Kalman filtering algorithm variation osteosarcoma
  • 相关文献

参考文献8

  • 1Bragato L, Jacobs K. Care pathways: The road to better health services [J]. Journal of Health Organization and Management, 2003, 17(3): 164-180.
  • 2Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15:116-132.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization [C]//IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948.
  • 4Ratnaweera A, Saman K, Watoson H C. Self-organizing hierarchical particle swarm optimizer with timevarying acceleration coeffieient[J]. IEEE Transactions Evolutionary Computation, 2004, 8(3): 240-255.
  • 5Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation in Evolutionary Computation, 2004, 8(3): 225-239.
  • 6Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and sub-populations [C]//Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA: LNCS Springer-Verlag, 2001: 469-476.
  • 7Jang J S R. ANFIS: Adaptive network based fuzzy inference system [J]. IEEE, Transactions on Systems, Man, and Cybernetics, 1993, 23(3):665-684.
  • 8Dan Simon. Training fuzzy systems with the extended Kalman filter[J]. Fuzzy Sets and Systems, 2002, 132: 189-199.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部