期刊文献+

基于PERCLOS的眼睛张开程度检测算法研究 被引量:6

Algorithm research of the eye open degree detection base on PERCLOS
下载PDF
导出
摘要 针对疲劳驾驶检测中驾驶员眼睛状态如何确定问题,文中提出一种眼睛张开程度检测算法。该算法依据虹膜(含瞳孔)暴露区域面积反映眼睛张开程度。文中首先检测虹膜左右边界,根据左右边界高度以及边界之间距离判断眼睛开闭情况。接着对开眼图像检测虹膜与上下眼睑交界,计算虹膜暴露面积。将其与眼睛长度的比值作为眼睛张开程度值。利用统计方法确定PERCLOS评测所需参数。试验结果表明该方法具有定位简单准确,对光照变化不敏感,检测眼睛张开程度精确等优点。 Aiming at the eye's state in driver fatigue detection,an algorithm to detect the eye open extent is proposed.This algorithm depends on the size of iris(including pupil) exposition area to reflect the eye open information.In this paper,first,detect both left and right boundaries of the iris,and judge the eye open or closed based on the height of both left and right boundaries and the distance of two boundaries.Then,detect the junction of the iris and both upper and lower eyelids,and count the iris exposition area.The ratio of the area and the eye's length is the value of eye open degree.PERCLOS parameters are determined using statistical method.Experimental result shows that this method is a simple and accuracy orientation way,is not sensitive to light,and can detect accurately eye open degree.
作者 苑玮琦 袁英
出处 《微计算机信息》 2010年第25期46-48,共3页 Control & Automation
基金 基金申请人:苑玮琦 项目名称:人眼自然张开状态下虹膜识别方法的研究 基金颁发部门:国家自然科学基金委(60672078)
关键词 疲劳驾驶 张开程度 虹膜 暴露面积 眼睑 driver fatigue open degree iris exposition area eyelid
  • 相关文献

参考文献10

二级参考文献38

共引文献51

同被引文献39

  • 1王磊,吴晓娟,巴本冬,董文会.一种基于视觉的PERCLOS特征提取方法[J].计算机工程与科学,2006,28(6):52-54. 被引量:8
  • 2王辉.主成分分析及支持向量机在人脸识别中的应用[J].计算机技术与发展,2006,16(8):24-26. 被引量:12
  • 32010年全国道路交通事故3906164起,中国公路网,http://www.chinahighway.comnews2011/527253.php.
  • 4边肇棋 张学工 等.模式识别[M].北京:清华大学出版社,2000.235.
  • 5Tijerina L, Gleckler M, Stoltzfus D, et al.A preliminary assess- ment of algorithms for drowsy and inattentive driver detec- tion on the road, DOT HS 808 (TBD) [R].[S.1.]: National Highway Traffic Safety Administration Vehicle Research and Test Center, 1999.
  • 6Wierwille W W, Ellswort L A, Wreggit S S, et al.Research on vehicle-based driver status~performance monitoring; development, validation, and refinemen of algorithms for detection of driver drowsiness, DOT HS s 808 247[R].[S.1.]: Office of Crash Avoidance Research National Highway Traffic Safety Ad- ministration, 1994.
  • 7Knipling R R, Wierwille W W.Vehicle-based drowsy driver detection: current status and future prospects[C]//IVHS America Fourth Annual Meeting,Atlanta,GA, 1994.
  • 8Dinges D F,Mallis M M.A final report:evaluation of tech- niques for ocular measurement as an index of fatigue and as the basis for alertness management DOT HS 808 762[R].[S.1.] ~ National Highway Traffic Safety Administration, 1998.
  • 9Mitas A, Bugdol M, Rygula A.Computer aid assement of driver's fatigue during driving based on eye movements analysis[J].Journal of Medical Informatics & Technologies, 2002,12:195-200.
  • 10Blanco M, Bocanegra J L, Morgan J F, et al.Assessment of a drowsy driver warning system for heavy-vehicle drivers: final report DOT HS 811 ll7[R].[S.1.]:Department of Trans- portation National Highway Traffic Administration,2009.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部