期刊文献+

基于MPSO-BP算法的摄像机标定的应用研究

The application of camera calibration based on MPSO-BP algorithm
下载PDF
导出
摘要 摄像机标定在光学应用系统中是一个必不可少的步骤,大量的直接信息都来源于图像。为获得精确的摄像头内外参数,提出一种利用改进粒子群算法训练小波神经网络进行摄像机标定的方法。该算法中引入随机粒子群机制,可以有效地克服传统算法收敛速度慢、易陷于局部极小值等缺点。标定实例仿真和分析表明,该算法在收敛速度、计算精度和平均收敛性能方面都有较大改进,可有效确定摄像机的内外参数。 Camera calibration is an essential step in optical applications, a large number of direct information comes from the image. In order to obtain accurate internal and external camera parameters, This paper presents a method using improved particle swarm algorithm to train wavelet neural network for camera calibration. The introduction of random particle swarm algorithm is a mechanism that can effectively overcome in the traditional algorithm, such as slow convergence and so easily caught in local minimum and so on. The simulation and analysis indicates that the algorithm has improved greatly in convergence speed, accuracy and the average convergence performance, which can effectively determine the internal and external camera parameters.
作者 李广 陈照章
出处 《光学仪器》 2010年第4期6-10,共5页 Optical Instruments
关键词 PSO算法 摄像机标定 随机粒子群 小波神经网络 PSO algorithm camera calibration random particle swarm wavelet neural network
  • 相关文献

参考文献8

二级参考文献110

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2陈黎霞,裴炳南.基于Bayesian正则化算法的非线性函数拟合[J].河南科学,2005,23(1):23-25. 被引量:6
  • 3黄宇,金蓓弘,万淑超.P2P系统服务质量研究[J].计算机科学,2005,32(5):45-47. 被引量:7
  • 4夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法[J].计算机科学,2005,32(10):143-145. 被引量:122
  • 5P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 6E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 7M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 8F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 9F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 10王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)

共引文献647

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部