期刊文献+

手指静脉图像增强算法研究 被引量:2

The research of finger-vein image enhancement algorithm
下载PDF
导出
摘要 根据手指静脉图像的特点,采用了一系列增强图像的算法,分平滑去噪、锐化和二值化三个步骤实现,从而达到分离静脉区域和背景区域的目的。在平滑去噪部分,根据手指静脉图像相邻区域间灰度的关系特点,采用了梯度倒数权重平滑法,对图像进行了去噪处理;在锐化部分,采用将高频强调滤波和直方图均衡化相结合的方法,达到了增强静脉和背景对比度的较理想的效果;在二值化处理部分,根据手指静脉不同区域灰度差别较大的特点,提出了一种分区域处理的方法。试验表明,该算法能有效的分离静脉区域和背景区域。 According to the characteristics of the finger-vein image, we adopted a series o~ methods to enhance the contrast of the image in order to separate the finger-vein areas from the background areas. The method consists of three steps: denoising, contrast enhancement and image binarization. In denoising, considering the relationship between gray levels in the adjacent areas of the finger-vein image, we adopted the gradient inverse weighted smoothing method. In contrast enhancement, we adopted a method which combined the traditional high frequency stress filtering algorithm together with the histogram equalization. With this method, the contrast of the finger-vein area and the background area has been enhanced significantly. During the binarization process, after taking the differences of the gray levels between the different areas of the finger vein image into consideration, we proposed a method which is based on dividing the image into several segments. Our results show that this set of means is quite competent to separate the finger-vein areas from the background areas.
出处 《光学仪器》 2010年第4期29-32,共4页 Optical Instruments
关键词 手指静脉 梯度倒数权重 图像增强 高频强调滤波 均衡化 分区域平均 finger-vein gradient inverse weighted image enhancement high frequency stress filtering equalization sub-regional average
  • 相关文献

参考文献6

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2ZANAN H D, LOVHOIDEN G, DESHMUKH H. Design of a clinical vein contrast enhancing projector[J]. SPIE, 2001, 4254: 204-215.
  • 3LOVHOIDEN G, DESHMUKH H, ZANAN H D. Clinical evaluation of vein contrast enhancement[J]. SPIE, 2002,4615 : 61 - 70.
  • 4WANG D C,VAGNUCCI A H, LI C C. Gradient inverse weighted smoothing scheme and the evaluation of its performance[J]. CVGIP,1981,15:167-181.
  • 5高木干雄,下田阳久.图像处理技术手册[M].北京:科学出版社,2007.
  • 6冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2008.

二级参考文献53

  • 1[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 2[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 3[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 4[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 5[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 6[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 7[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.
  • 8[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435.
  • 9[10]L Wiskott,et al.Face recognition by elastic bunch graph matching [J].IEEE Trans.PAMI.1997,19(6) :775-779.
  • 10[11]N Ratha,et al.A real-time matching system for large fingerprint database [J].IEEE Trans.PAMI,1996,18(8) :799-813.

共引文献164

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部