期刊文献+

模糊FP-growth在入侵检测中的应用 被引量:1

Application of Fuzzy FP-growth to Intrusion Detection
原文传递
导出
摘要 关联规则挖掘技术目前被广泛应用于入侵检测系统中。关联规则挖掘算法之一的FP-growth算法在处理数值量的输入时需要二值化,使得准确率不高;而Fuzzy Apriori算法需要重复扫描数据库,效率较低。针对此问题,改进现有的FP-growth算法,提出模糊化FP-growth算法,从而提取模糊关联规则,用于N类异常数据的分类入侵检测。在KDDCup'99数据集上评估,结果表明对于数值量的输入,该方法应用于入侵检测准确率高于FP-growth算法,学习效率高于Fuzzy Apriori算法。 Association rule mining is widely used in IDS.The FP-growth algorithm,as an association rule mining algorithm,needs to be binarized in processing numerical input data,resulting in low accuracy,while Fuzzy Apriori algorithm demands repeated scan of database,resulting in low efficiency.For this problem,the fuzzy FP-growth algorithm based on modification of FP-growth is proposed,thus to extract fuzzy association rules for the classification intrusion detection of N class abnormal data.This method is assessed in KDDCup'99 data set,and the results show that,for numerical input,the detection accuracy of this method is higher than that of FP-growth algorithm,its learning efficiency is higher than that of Fuzzy Apriori.
作者 冯翔 帅建梅
出处 《信息安全与通信保密》 2010年第9期87-90,共4页 Information Security and Communications Privacy
关键词 模糊频繁模式增长 模糊关联规则 入侵检测 Fuzzy FP-growth fuzzy association rules intrusion detection
  • 相关文献

参考文献7

  • 1LEE W, STOLFO S J, MOK K W. Mining Audit Data to Build Intrusion Detection Models[C]//AAAI. Proc. of the 4th International Conference on Knowledge and Data Mining. New York: AAAIPress, 1998: 66-72.
  • 2AGRAWAL R, IMIELI?SKI T, SWAMI A. Mining Association Rules Between Sets of Items in Large Databases[C]//ACM. Proc. of the ACM S1GMOD Conference on Management of Data. New York: ACM Press, 1993: 207-216.
  • 3TAJBAKHSH A, RAHMATI M, MIZAEI A. Intrusion Detection Using Fuzzy Association Rules[J]. Applied Soft Computing, 2009, 09: 462-469.
  • 4HAN J, PEI J, YIN Y, et al. Mining Frequent Patterns Without Candidate Generation: A frequent-pattern Tree Approach[J]. Data Mining and Knowledge Discovery, 2004, 08(01): 53-87.
  • 5BEZDEK J C, ENRLICH R, FULL W. FCM: The Fuzzy C-means Clustering Algorithm[J]. Computers and Geosciences, 1984, 10(02): 191-203.
  • 6王红,张阳,李绪成.入侵检测中聚类应用的研究进展[J].信息安全与通信保密,2007,29(12):107-110. 被引量:2
  • 7张宏宇,刘宝旭.网络攻击特征库的优化设计与实现[J].信息安全与通信保密,2009,31(1):81-83. 被引量:1

二级参考文献18

共引文献1

同被引文献14

  • 1李金娟,王卫锋.基于FP-growth算法在学生成绩中的关联规则分析[J].巢湖学院学报,2007,9(6):30-33. 被引量:5
  • 2Keogh E, Pazzani M. A simple dimensionality reduction technique forfast similarity search in large time series databases[ C]//4th Pacific-A-sia Conference on Knowledge Discovery and Data Mining ( PAKDD),Kyoto,Japan,2000:122 -133.
  • 3Jessica Lin, Eamonn Keogh, Stefano Lonardi, et ai. Asymbolic represen-tation of time series,with implications for streaming algorithms[ C ]//Proceedings of the 8th ACM SIGMOD workshop on Research issues indata mining and knowledge discovery ,2003 :2-11.
  • 4Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns WithoutCandidate Generation [ C ]//Proc. of ACM-SIGMOD Int * 1 Conf. onManagement of Data. Dallas,USA:ACM Press,2000.
  • 5Wang Changying,Zhang Jie. Coastline interpretation based on associa-tion rule from multi-spectural remote sensing images[ J] . InternationalJournal of Remote Sensing,2010,31 (24) :6409 -6423.
  • 6Tomas Flouri, Jan Janousvek, Borvivoj Melichar. Subtree Matching byPushdown Automata[ J]. ComSIS,Special Issue,2010,7(2).
  • 7Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, et al. Dimen-sionality Reduction for Fast Similarity Search in Large Time Series Da-tabases [J ]. Knowledge and Information System,2000,3 (3 ): 263-286.
  • 8JinShieh,Keogh E. iSAX: Indexing and Mining Terabyte Sized TimeSeries. Las Vegas, Nevada[ C]//USA:In Proceeding of the 14th ACMSIGKDD international Conference on Knowledge Discovery and DataMining,2008 :623 -631.
  • 9Bentley J. Multidimensional binary search trees used for associative search-ing[ J]. Communications of ACM,1975,18(9) :509 -517.
  • 10李睿,曾俊瑀,周四望.基于局部标签树匹配的改进网页聚类算法[J].计算机应用,2010,30(3):818-820. 被引量:14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部