期刊文献+

Exact Solutions of(2+1)-Dimensional HNLS Equation

Exact Solutions of(2+1)-Dimensional HNLS Equation
下载PDF
导出
摘要 In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.
作者 郭爱林 林机
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第9期401-406,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.10875106
关键词 (2+1)-dimensional HNLS equation classical Lie group approach the symmetry reduced method exact solution NLS方程 精确解 偏微分方程系统 Lie对称性 对称方法 非线性 行波解 李对称
  • 相关文献

参考文献20

  • 1S.P. Gorza, P.K. Ockaert, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 102 (2009) 134101.
  • 2S.P. Gorza and M. Haelterman, Opt. Express 16 (2008) 16935.
  • 3B.K. Tan and R.S. Wu, Science in China (Series B) 36 (1993) 1367.
  • 4X.Y. Tang and P.K. Shukla, Phys. Rev. A 76 (2007) 013612.
  • 5B. Li, Int. J. Mod. Phys. C 18 (2007) 1187.
  • 6K. Rypdal and J.J. Rasmussen, Phys, Scr. 40 (1989) 192.
  • 7Y.S. Kivshar and D.E. Pelinovsky, Phys. Rep. 331 (2000) 117.
  • 8D.E. Pelinonsky, Math. Comput. Simul. 55 (2001) 585.
  • 9B. Deconinck, D.E. Pelinovsky, and J.D. Carter, Proc. R Soc. A 462 (2006) 2039.
  • 10D.J. Ben and A.C. Newell, J. Math: Phys. 46 (1967) 133.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部