期刊文献+

基于响应面法的低速翼型气动优化设计 被引量:9

Aerodynamic optimization design of low-speed airfoil based on response surface methodology
下载PDF
导出
摘要 响应面方法相较于其它直接优化方法有其高效、实用的优势,此前的研究更多地将响应面方法用于超音速和跨音速翼型的减阻优化设计中。本文将此方法应用于低速翼型优化设计中,进行了基于RANS(Reynolds-Aver-aged Navier-Stokes)方程和自由转捩预测耦合求解的低速翼型气动优化设计。通过计算附面层方程得到附面层参数并用en方法计算转捩位置,并考虑了T-S波和层流分离造成的转捩。RANS方程计算中,使用了转捩过渡区模型,以保证附面层外边界压力分布的精度。RANS方程和转捩预测迭代进行至转捩位置收敛。在响应面模型计算中,使用不含二阶交叉项的二阶多项式模型,减少了构造模型所需的计算量;合理的选择设计空间保证了构造的响应面模型具有较高的精度。使用三个设计点的多目标优化设计,保证了设计的合理性。通过对NACA64(1)-112翼型优化计算结果表明,本文的方法可以有效地进行低速翼型的气动优化,各设计点上转捩位置也得到了改善,有较好的工程实用前景。 Response Surface Methodology(RSM) has some advantages over other direct optimization techniques.The previous studies using RSM mainly deal with transonic and supersonic body optimization.In this paper,RSM has been applied to obtain optimal shapes of low-speed airfoils based on coupling RANS equations and free transition prediction.In solving boundary-layer equations,boundary-layer properties are computed and used in the acceptable en method to obtain transition locations.In RANS code,transitional flow region is used.In constructing RS model,quadratic polynomials without the second-order cross items are employed and the accuracy of the approximation is not sacrificed when the range of design variables are carefully selected.The design results indicate that RSM could be successfully applied to three-point design to improve aerodynamic performance and transition locations of low-speed airfoils,and the overall computation burden is greatly reduced.
出处 《空气动力学学报》 EI CSCD 北大核心 2010年第4期430-435,共6页 Acta Aerodynamica Sinica
基金 国家自然科学基金资助项目(90605004)
关键词 响应面方法 RANS方程 转捩预测 低速翼型 优化设计 response surface methodology RANS equation transition prediction low-speed airfoil optimization design
  • 相关文献

参考文献8

  • 1MCDONALD H,BRILEY W R.A Survey of recent work on interacted boundary layer theory for flows with separation[M].Numerical and Physical Aspects of Aerodynamic Flows II,ed.T.Cebeci,1983.
  • 2CEBECI T.Stability and transition:theory and application[M].Horizons publishing Inc.,Long Beach,California,2004:85-111.
  • 3NEBEL C,RADESPIEL R,WOLF T.Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods[R].AIAA 2003-3593,2003.
  • 4WALKER G J.Transition flow on axial turbomachine blading[J].AIAA Journal,1989,27(5):595-602.
  • 5HANS W S,HASSE W.Navier-Stokes airfoil computations with en transition prediction including transitional flow regions[J].AIAA Journal,2000,38(11):2059-2066.
  • 6MYERS R H,MONTGOMERY D C.Response surface methodology:process and product optimization using designed experiments[M].Wiley & Sons,NY,2002:1-78,351-401.
  • 7钱瑞战,乔志德,宋文萍.基于NS方程的跨声速翼型多目标多约束优化设计[J].空气动力学学报,2000,18(3):350-355. 被引量:13
  • 8熊俊涛,乔志德,韩忠华.基于Navier-Stokes方程跨声速翼型和机翼气动优化设计[J].空气动力学学报,2007,25(1):29-33. 被引量:13

二级参考文献12

  • 1熊俊涛,乔志德.基于响应面法的跨声速翼型气动优化设计[J].实验流体力学,2005,19(1):104-108. 被引量:10
  • 2刘惟信.机械最优化设计[M].北京:清华大学出版社,1986..
  • 3Song Wenping,ProceedingsoftheThirdInternationalConferenceonFluidMechanics,1998年
  • 4刘惟信,机械最优化设计,1986年
  • 5陈开周,最优化计算方法,1985年
  • 6Zhong Bowen,ICAS 94 2 .1 .1
  • 7QIAO ZHIDE,QIN XIAOLONG,YANG XUDONG.Wing Design by Solving Adjoint Equations[R].AIAA 2002-0263,2002.
  • 8SAMAREH J A.Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J].AIAA Journal,2001,39(5):877-884.
  • 9SCHMITT V,CHARPIN F.Pressure distribution on the ONERA-M6-wing at transonic Mach numbers[R].AGARD-AR-138,1979.
  • 10MYERS R H,MONTGOMERY D C.Response surface methodology:process and product optimization using designed experiments[M].New York:Wiley.1995:1-78,351-401.

共引文献23

同被引文献75

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部