期刊文献+

壁虎的运动行为与动力学研究:竖直面内运动方向的影响 被引量:4

原文传递
导出
摘要 壁虎在竖直面内不同方向运动时运动行为的观察和运动作用力的测定不仅能揭示出壁虎运动的力学规律,也可以进一步获得仿生机器人控制设计的灵感.用三维力传感器阵列测定大壁虎在竖直面内运动的三维作用力,并结合高速摄像讨论在自下向上,自上向下和自右向左3个不同方向运动时大壁虎的运动行为及其脚掌的功能.结果表明大壁虎的运动速度随步频的提高而增加,但与脚掌的黏附时间与脱附时间无明显相关性.大壁虎各脚掌产生相应的作用力以平衡重力和翻转矩,并为运动提供必要的推力;位于身体质心上方的脚掌在支撑身体、运动驱动、运动平稳等方面都起到关键作用;竖直面内大壁虎在不同方向运动时运动行为和脚掌功能所发生的相应改变,使得大壁虎能够在竖直面上安全高效的自由运动.这一研究对仿壁虎机器人的结构设计、步态规划和控制的选择有所启发和帮助.
出处 《科学通报》 EI CAS CSCD 北大核心 2010年第23期2339-2349,共11页 Chinese Science Bulletin
  • 相关文献

参考文献40

  • 1Dickinson M H, Farley C T, Full R J, et al. How animals move: An integrative view. Science, 2000, 288:100--106.
  • 2Moermond T C. Habitat constraints on the behavior, morphology, and community structure of anolis lizards. Ecology, 1979, 60:152--164.
  • 3Losos J B. The evolution of form and function: Morphology and locomotor performance in West Indian Anolis lizards. Evolution, 1990, 44:1189--1203.
  • 4Sinervo B, Losos J B. Walking the tight rope: Arboreal sprint performance among Sceloporus occidentalis lizard population. Ecology, 1991, 72:1225--1233.
  • 5Van Damme R, Aerts P, Vanhooydonck B. No trade-off between sprinting and climbing in two populations of the Lizard Podarcis hispanica. Biol J Linn Soc, 1997, 60:493-503.
  • 6Zaaf A, Herrel A, Aerts P, et al. Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria). Zoomorphology, 1999, 119:9-22.
  • 7Miles D B, Fitzgerald L A, Snell H L. Morphological correlates of locomotor performance in hatchling Amblyrhynchus cristatus. Oecologia, 1995, 103:261-264.
  • 8Rewcastle S C. Stance and gait in tetrapods: An evolutionary scenerio. Syrup Zool Soc Lond, 1981, 48:239--267.
  • 9Bauer A M, Russell A P, Powell G L. The evolution of locomotor morphology in Rhoptropus (Squamata: Gekkonidae): Functional and phylogenetic considerations. Afr J Herpetol, 1996, 45:8-30.
  • 10Cartmill M. Functional Vertebrate Morphology. Cambridge, MA: Harvard University Press, 1985.

二级参考文献80

共引文献42

同被引文献32

  • 1Baeksuk C, Kyungmo J, Chang-Soo H,et al. A survey ofclimbing robots : locomotion and adhesion [ J]. Internation-al Journal of Precision Engineering and Manufacturing,2010,11(4) : 633.
  • 2Surachai P. Development of a wall climbing robot [ J].Journal of Computer Science,2010,10(6) :1185.
  • 3Wang W, Wang K,Zong G H,et al. Principle and experi-ment of vibrating suction method for wail-climbing robot[J]. Vacuum,2010,85(1) :107.
  • 4Yan W, Shuliang L,Dianguo X,et al. Development andapplication of wall-climbing robots [ J]. IEEE InternationalConference on Robotics and Automation,2009 ( 2 ) :1207.
  • 5Wolfgang Fischer, Fabien Tache,Roland Siegwart. Mag-netic wall climbing robot for thin surfaces with specificobstades[ J]. Springer Tracts in Advanced Robotics,2008(42) :551.
  • 6Tosun O, Akin H L, Tokhi M 0,et al. TRIPILLAR:Min-iature magnetic caterpillar climbing robot with plane tran-sition ability [ C]//12th International Conference onClimbing and Walking Robots and the Support Technolo-gies for Mobile Machines, Istanbul : CLAWAR, 2009 : 343-350.
  • 7Kennedy B, Okon A, Aghazarian H, et al. Lemuriib: Arobotic system for steep terrain access [ J] . Climbing andWalking Robots, 2009(34) :1077.
  • 8Sattar J, Dudek G. A boosting approach to visual servo-control of an underwater robot [ J]. Experimental Robot-ics, 2009 (54) :417.
  • 9Yasong L, Ausama A, Dan S,et al. Abigaille II :towardthe development of a spider-inspired climbing robot [ J].Robotica, 2012(30) : 79.
  • 10Yamamoto A, Nakashima T, Higuchi T. Wall climbingmechanisms using electrostatic attraction generated byflexible electrodes [ J]. International Journal of AdvancedRobotic System, 2013,10 ( 36) :1.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部