期刊文献+

带有介质衬底的有限大FSS的一体化分析方法 被引量:1

An Integrative Analysis Method of Relatively Good Precision for Finite Frequency Selective Surfaces(FSSs) of Radome
下载PDF
导出
摘要 在天线罩上设计频率选择表面(FSS)可以改善天线罩的透波性能,现行的分析FSS特性的方法大多基于无限大平面FSS阵列,在实际应用中会产生一定的局限性。文中提出一种面向带有介质衬底的有限大FSS阵列结构的一体化分析法——混合体面积分公式,通过体面等效准则建立混合积分公式,并分别对2种形状的FSS结构建模,运用多级快速多重运算对计算过程进行加速,得到了比较精确的分析结果。 Aim.The existing methods use the "infinite" assumption to analyze FSS arrays and therefore,in our opinion,have shortcomings.So we propose an integrative analysis method that uses the hybrid Volume-Surface Integral Equation(VSIE) for finite FSSs.Section 1 of the full paper derives eqs.(4) and(5) for the scattering field of the finite FSS array.Section 2 establishes the VSIE for an arbitrarily shaped FSS through using the volume-surface equivalence principle.Section 3 uses the VSIE to model and calculate two specific shapes of FSSs;it then applies the multilevel fast multiple algorithm to speed up the solution process and the results,presented in Figs.4 and 6,and their analysis show preliminarily that our integrative analysis method has relatively good precision.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第4期570-573,共4页 Journal of Northwestern Polytechnical University
关键词 频率选择表面体 面积分公式 并矢格林函数 radomes algorithms frequency selective surface(FSS) volume-surface integral equation(VSIE)
  • 相关文献

参考文献7

  • 1Park H, Eom H. Electromagnetic Scattering from Multiple Rectangular Apertures in a Thick Conducting Screen. IEEE Trans on Antennas Propagation, 1999, 47(6) : 1056 - 1060.
  • 2Park H, Eom H. Electrostatic Potential Distribution through a Rectangular Aperture in a Thick Conducting Plane. IEEE Trans on Microwave Theory Tech, 1996, 44:1745 - 1747.
  • 3Kim Y, Eom H. Fourier-Transform Analysis of Electrostatic Potential Distribution through a Thick Slit. IEEE Trans on Electromagnetic Compat, 1996, 38 : 77 - 79.
  • 4Kinayman N, Aksun M I. Comparative Study of Acceleration Techniques for Integrals and Series in Electromagnetic Problems. Radio Science, 1984, 32:1713 - 1722.
  • 5Jordan K, Richter G, Sheng P. An Efficient Numerical Evaluation of the Green's Function for the Helmholtz Operator on Periodic Structures. Journal of Computational Physics, 1986, 63 : 222 - 235.
  • 6Mosig J R. Scattering by Arbitrarily-Shaped Slots on Thick Metallic Screens: An Approximate Solution. IEEE Trans on Antennas Propagation, 2004, 52:2109 -2117.
  • 7Kustepeli A, Martin A Q. On the Splitting Parameter in the Ewald Method. IEEE Microwave Guided Wave Letter, 2000, 10: 168 - 170.

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部