期刊文献+

XML关键字检索中推断用户需求信息对象的方法XObject 被引量:2

XObject: An XML Keyword Search Method Based on Structural Retrieval
下载PDF
导出
摘要 基于关键字查询的XML检索技术,因为它的用户友好性,近几年得到了信息检索领域研究者的广泛关注。但是由于关键字缺少XML结构语义信息,检索结果和用户需求存在较大偏差。而基于结构的XML检索,用户不仅需要了解XML内部结构,还要掌握结构查询语言,导致用户难以提出准确描述查询意图的查询表达式。文章结合二者研究方向之长,提出一种基于关键字的结构查询方法XObject。XObject用面向对象的思想,分析查询关键字和XML的结构信息,推断用户查询的信息对象,构建一组结构查询语句,再通过现有的结构检索系统,实现查询。经在多个XML实际数据集上验证,结果表明,XObject方法具有很高的查全率和查准率,尤其是和经典的关键字查询方法SLCA相比,XObject方法查准率有明显提高。 Aim.The introduction of the full paper points out the two reasons why the user can not construct effective structural queries;as a result,the queries over XML data often get useless answers.To address this challenge,this paper proposes a new approach for automatically constructing XML structural queries,named XObject.Section 1 reviews past literature.Section 3 explains the XObject method;its core consists of:(1) the generation of a structural query from a keywords query by analyzing the keywords and the schema of XML data;(2) the evaluation of the structural query on XML data with existing XQuery or XPath search engine.Section 4 presents our experimental work;the experimental results for XObject and SLCA,presented in Figs.3 and 4,and their analysis show preliminarily that,compared with SLCA method,XObject method is a little better in recall rate but is much better in precision rate.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第4期602-608,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60803043 60970070) 国家高技术研究发展计划(2009AA1Z134)资助
关键词 XML 信息检索 关键字 结构检索 XObject XML information retrieval keyword structural retrieval XObject
  • 相关文献

参考文献11

  • 1Xu Y, Papakonstantinou Y. Efficient Keyword Search for Smallest LCAs in XML Databases. Proceedings of SIGMOD'2005 ,Baltimore, Maryland, USA.
  • 2Cohen S, Mamou J, Kanza K, et al. Xseareh: A Semantic Search Engine for XML. Proceedings of VLDB, 2003, Berlin, Germany.
  • 3Wu P, Sismanis Y, Reinwald B. Towards Keyword-Drlven Analytical Processing. SIGMOD, 2007, Beijing, China.
  • 4Li Jianxin, Liu Chengfei, Zhou Rui, Ning Bo. Processing XML Keyword Search by Constructing Effective Structured Queries. APWeb/WAIM 2009, LNCS 5446, Suzhou, China.
  • 5Ralf Schenkel, Martin Theobald. Structural Feedback for Keyword - Based XML Retrieval . ECIR 2006, LNCS 3936, 2006, Springer Berlin/Heidelbeng.
  • 6Hu Ziyang, Chen Yi. Reasoning and Identifying Relevant Matches for XML Keyword Search. VLDB'08, 2008, Auckland, New Zealand.
  • 7Liu Z Y, Chen Y. Identifying Meaningful Return Information for XML Keyword Search. Proceedings of SIGMOD, 2007.
  • 8万常选,鲁远.基于权重查询词的XML结构查询扩展[J].软件学报,2008,19(10):2611-2619. 被引量:21
  • 9崔航,文继荣,李敏强.基于用户日志的查询扩展统计模型[J].软件学报,2003,14(9):1593-1599. 被引量:61
  • 10李晓光,于戈,龚剑,王大玲,鲍玉斌.有效的非完全结构XML查询[J].计算机学报,2007,30(1):57-67. 被引量:8

二级参考文献34

共引文献86

同被引文献26

  • 1Li Y, Yu C, Jagadish H V. Schema-free XQuery [C]//Proceedings of the Thirtieth international conference on Very Large Data Bases. Volume 30, Toronto, Canada: VLDB Endowment, 2004 : 72-83.
  • 2Grust T. Accelerating XPath location steps[C]//Proceedings of the 2002 ACM SIGMOD intemational conference on Management of data. Madison,Wiseonsin..ACM,2002:109-120.
  • 3Liu Z, Cher Y. Reasoning and identifying relevant matches for XML keyword search [C]//Proc. VLDB Endow. vol. 1,2008: 921-932.
  • 4Theobald M,.Bast H, Maj umdar, et al. TopX: efficient and versatile top-k query processing for semistructured data [J]. The VLDB Journal, 2008,17 : 81-115.
  • 5Tata S,Lohman G M. SQAK: doing more with keywords[C]// Proceedings of the 2008 ACM SIGMOD International Confe rence on Management of Data Vancouver. Canada.. ACM, 2008: 889-902.
  • 6Guo L,Shao F, Botev C, et al. XRANK: ranked keyword search over XML documents[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. 2003 :16-27.
  • 7Shao F, Guo L, Botev C, et al. Efficient keyword search over virtual XML views[J]. The VLDB Journal, 2009,18 : 543-570.
  • 8Xu Y, Papakonstantinou Y. Efficient keyword search for smallest LCAs in XML databases[C] // Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland: ACM, 2005 : 527-538.
  • 9Badue C S. Distributed query processing using partitioned inverted files[D]. Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, March 2001.
  • 10Yi J, Sundaresan N. A classifier for semi-structured documents [C]// Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. United States: Boston, Massachusetts, ACM, 2000.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部