期刊文献+

多复变的解析Besov空间上的Toeplitz算子(英文)

Toeplitz operators on analytic Besov spaces of several complex variables
下载PDF
导出
摘要 将刻画由复测度μ诱导出的Toeplitz算子Tμ作用在单位球的解析Besov空间上是有界或紧的.对1<p<∞,α>-1,μ是n上的复测度,Toeplitz算子Tαμ作用到Bp上是有界的当且仅当测度|Pα,n+1(μ)(z)|p(1-|z|2)p(n+1-α)dυ(z)是一个(Bp,p)-Carleson测度.在同样的条件下,Toeplitz算子Tμα作用到Bp上是紧的当且仅当测度|Pα,n+1(μ)(z)|p(1-|z|2)p(n+1-α)dυ(z)是一个消失的(Bp,p)-Carleson测度. In this note,we characterize complex measures μ on the unit ball for which the Toeplitz operator T is hounded or compact on the analytic Besov spaces Bpwith 1 ≤p 〈 ∞. We let 1 〈p 〈 ∞ , let α 〉-1, and let μ be the complex measure. The Toeplitz operator Tμ is hounded on Bp if and only if the measure )-Carleson measure. In the same conditions, the Toeplitz operator Tμ is compact on Bp if and only if the measure s a vanishing(Bp ,p)-Carleson measure.
出处 《广州大学学报(自然科学版)》 CAS 2010年第4期6-9,共4页 Journal of Guangzhou University:Natural Science Edition
关键词 TOEPLITZ算子 解析 BESOV空间 Toeplitz operator analytic Besov spaces
  • 相关文献

参考文献10

  • 1ZHU Ke-he. Spaces of Holomorphic functions in the unit ball[ M]. New York:Springer-verlag, 1967.
  • 2WU Zhi-jian, ZHAO Ru-zhao, ZORBOSKA N. Toeplitz operators on the Bloch-type Spaces [ J]. Proc Amer Math Soc, 2008,61:511-547.
  • 3WU Zhi-jian. Carleson measures and multiplication for Dirichlet Spaces [ J]. Funct Anal, 1999,169:148-163.
  • 4WU Zhi-jian, ZHAO Ru-zhao, ZORBOSKA Nina. Toeplitz operators on analytic Besov spaces [ J]. Integer Equ Oper Theory, 2008,60: 435-449.
  • 5LUECKING D. Trace ideal oriteria for Toeplitz operators [ J]. J Funct Anal, 1987,73: 345-368.
  • 6ARCOZZI N, ROCHBERG R, SAWYER E. Carleson measures for analytic Besov Spaces [ J]. Rev Math Ibcroamericanaa, 2002,418 : 443-510.
  • 7ZHU Ke-he. Operator theory in function spaces [ M ]//In C, New York : Springer-verlag, 1990.
  • 8RONALD G. Banach algebraic techniques in operators theory[ M]. New York:Springer-verlag,1971.
  • 9AXLER S,ZHENG D. Compact operators via the berezin transform[ J]. Indianauniv Math, 1998,47:387400.
  • 10CAO Guang-fu. Toeplitz operators with unbounded symbols of several complex variables [ J ]. Math Anal Appl,2008,339: 1277-1285.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部