摘要
将刻画由复测度μ诱导出的Toeplitz算子Tμ作用在单位球的解析Besov空间上是有界或紧的.对1<p<∞,α>-1,μ是n上的复测度,Toeplitz算子Tαμ作用到Bp上是有界的当且仅当测度|Pα,n+1(μ)(z)|p(1-|z|2)p(n+1-α)dυ(z)是一个(Bp,p)-Carleson测度.在同样的条件下,Toeplitz算子Tμα作用到Bp上是紧的当且仅当测度|Pα,n+1(μ)(z)|p(1-|z|2)p(n+1-α)dυ(z)是一个消失的(Bp,p)-Carleson测度.
In this note,we characterize complex measures μ on the unit ball for which the Toeplitz operator T is hounded or compact on the analytic Besov spaces Bpwith 1 ≤p 〈 ∞. We let 1 〈p 〈 ∞ , let α 〉-1, and let μ be the complex measure. The Toeplitz operator Tμ is hounded on Bp if and only if the measure )-Carleson measure. In the same conditions, the Toeplitz operator Tμ is compact on Bp if and only if the measure s a vanishing(Bp ,p)-Carleson measure.
出处
《广州大学学报(自然科学版)》
CAS
2010年第4期6-9,共4页
Journal of Guangzhou University:Natural Science Edition