期刊文献+

基于自评估HMM的离心泵状态识别方法研究 被引量:4

Research on methods of condition recognition for centrifugal pump based on automatic evaluation HMM
下载PDF
导出
摘要 由于HMM本身的特点,在实际应用中如何找到一个合适的HMM模型始终是一个难点.采用传统的Baum-W elch算法对HMM进行训练,并提出了一种对训练结果进行评估的方法,构建了可自动评估的HMM训练体系. According to the characteristics of HMM, it is difficult to find a suitable HMM model in the practical application. In this thesis, the Baum-Welch algorithm was used to train the HMMs and an evaluation algorithm of HMM was presented. Through it, an automatic evaluation HMM was constructed. The experiments on centrif- ugal pump show this novel evaluation algorithm can effectively improve the practicality of HMM diagnostic systems and the degree of automation on HMM training.
出处 《广州大学学报(自然科学版)》 CAS 2010年第4期13-17,共5页 Journal of Guangzhou University:Natural Science Edition
基金 国家863高技术研究发展计划项目(2008AA04Z407)资助
关键词 隐马尔可夫模型 评估算法 故障诊断 hidden Markov model evaluation algorithm condition recognition
  • 相关文献

参考文献10

  • 1ABOU-MOUSTAFA K T, CHERIET M, SUEN C Y. On the structure of hidden Markov models [ J]. Pattern Recognition Letters, 2004, 25:923-931.
  • 2YE Da-peng. Research on method and application of faults diagnosis in rotating machinery based on 2D hidden Markov model [ D]. Hangzhou : Zhejiang University, 2004.
  • 3VAPNIK V. Statistical learning theory [ M ]. NewYork: JohnWiley and Sons, 1998:102-110.
  • 4HARIHARAN R, VIIKKI O. An integrated study of speaker normalization and HMM adaptation for noise robust speaker-in- dependent speech recognition [ J ]. Speech Communication, 2002,37 ( 3-4 ) : 349-361.
  • 5BENGIO S. Multimodal speech processing using asynchronous hidden Markov models [ J ]. Information Fusion, 2004, 5 (2) : 81-89.
  • 6叶大鹏,丁启全,吴昭同.基于2D-HMM旋转机械升速过程的故障诊断方法研究[J].中国机械工程,2003,14(13):1149-1151. 被引量:1
  • 7LEE J M, KIM S J,Yoha Hwang, et al. Diagnosis of mechanical fault signal using continuous hidden Markov model [ J]. Journal of Sound and Vibration. 2004. 276 : 1065-1080.
  • 8BAYDAR N, BALL A. Detection of gear failures via vibration and acoustic signals using wavelet transform[ J]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787-804.
  • 9BAGGENSTOSS P M. A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces [ C ]//Proceedings of the Acoustics, Speech, and Signal Processing, IEEE, 2000,2 : 717-720.
  • 10NORMANDIN Y, MORGAN S D. An improved MMIE training algorithm for speaker-independent[ C] //Small Vocabulary, Continuous Speech Recognition. ICASSP91,1991:537-540.

二级参考文献7

  • 1Agazzi O E,Kuo S. Pseudo Two-dimensional Hidden Markov Model for Document Recognition. J.of AT&T Technical,1993,72 (5): 60-72.
  • 2Rigoll G,Muller S. Winterstein B. Robust Person Tracking with Non-stationary Background Using a Combined Pseudo 2d- hidden Markov Models and Kalman-filter Approach. IEEE Int. conf. on Image Processing, 1999,4 : 242- 246.
  • 3Otluman H, Aboulnasr T. Low Complexity 2- d Hidden Markov Model for Face Recognition. Proc.ISCAS, 2000,5 : 33 - 36.
  • 4Katrin W, Samy B,Bourlard H,et al. HMM2 a Novel Approach to HMM Emission Probability Estimation. Int. conf. on Spoken Language Processing, Beijing ,China, 2001.
  • 5Bengio S,Bourlard H,Weber K. An EM Algorithm for Hmms with Emission Distributions Represented by Hmms. IDIAP- Research Report ,00-11. Martigny,Switzerland :Dalle Molle Institute for Perceptual Artificial Intelligence, 2000.
  • 6屈梁生,史东锋.全息谱十年:回顾与展望[J].振动.测试与诊断,1998,18(4):235-242. 被引量:33
  • 7何正嘉,訾艳阳,张周锁,马军星,高强,杨胜军.大型机械设备变工况非平稳动态分析与监测诊断关键技术[J].中国机械工程,1999,10(9):978-981. 被引量:21

同被引文献19

  • 1李雪云,孙爱峰,何艳频.Spearman等级相关系数计算公式相互关系的数学推导[J].中国现代药物应用,2007,1(11). 被引量:5
  • 2苗强,Viliam Makis.基于隐马尔科夫模型的故障诊断系统研究[J].航空学报,2005,26(5):641-646. 被引量:13
  • 3徐腊梅,阳卫国,吴建国.智能控制在污水处理系统中的应用[J].工业安全与环保,2006,32(1):17-19. 被引量:3
  • 4张国军,朱俊,吴军,朱海平.基于BDD的考虑共因失效的故障树可靠性分析[J].华中科技大学学报(自然科学版),2007,35(9):1-4. 被引量:13
  • 5Hengio S. Multimodal speech processing using asyn-chron-ous hidden markov models [J] . Information Fu-sion, 2004, 5 (2): 81-89.
  • 6Lee J M, Kirn S J,Hwang Y, et al. Diagnosis of me-chanical fault signals using continuous hidden Markovmodel [J] . Journal of Sound and Vibration, 2004,276(3): 1065-1080.
  • 7Rahiner L. A tutorial on hidden Markov models and se-lect-ed applications in speech recognition [J] . Proceed-ings of the IEEE, 1989,77 (2): 257-286.
  • 8Viterbi A. Error bounds for convolutional codes and an as-ymptotically optimum decoding algorithm [J] . Infor-ma-tion Theory, IEEE Transactions on, 1967, 13(2): 260-269.
  • 9Forney Jr G I). The viterl)i algorithm [C] . Proceedingsof the IEEE,1973,61 (3): 268-278.
  • 10Schnall-Levin M, Chindelevitch L, Berger H. Invertingthe Viterbi algorithm : an abstract framework for struc-ture de-sign [C] . //Proceedings of the 25th inteniation-al conferen-ce on Macliine learning. ACM t 2008 :904-911.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部