摘要
在层去图象法测量系统中,由于诸多因素的影响,物体的空间坐标与截面图象坐标之间存在着复杂的非线性映射关系。如果采用完全理想条件和线性几何失真方法来标定系统,则会影响测量精度,为此提出了一种基于神经网络的标定方法,显著地提高了测量系统的精度。
There is complex nonlinear mapping between the object space and image space due to many factors in cross-sectional imaging measurement system. The measurement accuracy will be low if the ideal or linear conditions are used to calibrate the system. A calibration method based on neural network is presented. The results show a remarkable improvement of the measurement accuracy.
出处
《机械设计与制造工程》
1999年第3期51-53,共3页
Machine Design and Manufacturing Engineering
基金
国家863计划项目
关键词
反求工程
标定
层去图象法
神经网络
测量系统
Reverse engineering Calibration Neural network Cross-sectional imaging measurement