期刊文献+

基于高阶统计的欠采样多信号频率估计 被引量:3

Multiple Frequencies Estimation for Signal Sub-nyquist Sampling Based on High Order Statistics
下载PDF
导出
摘要 利用信号频率特征矢量Kronecker积并基于四阶累积量、时延和 MUSIC算法,本文提出了一种适用于任意高斯噪声环境的欠采样多信号频率估计的新方法。适当选取时延参数,方法极大增加估计信号的数目。计算机模拟证实了其有效性。 With artfully Kronecker product of signal frequency character vector, fourth--order cumulant, time delay and MUSIC algorithm, a new method , which can be used to arbitrary gaussian noise environment, and which estimates frequencies of multiple signals with the sampling rate significant less than Nyquist rate, is proposed in this paper. With the selection of time delay properly, the number of signal estimated frequency will be increased greatly. Computer simulation confirms its effectiveness.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 1999年第3期229-231,241,共4页 Chinese Journal of Scientific Instrument
关键词 四阶累积量 时延 频率 MUSIC算法 频率估计 Fourth-order cumulant, Time delay, Frequency, MUSIC algorithm
  • 相关文献

参考文献3

  • 1唐斌.空间信号多维参数估计方法研究:博士学位论文[M].电子科技大学,1996..
  • 2唐斌,电子科学学刊,1997年,19卷,10期,619页
  • 3唐斌,博士学位论文,1996年

同被引文献30

  • 1高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报,2005,17(1):223-224. 被引量:12
  • 2黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 3Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with Sub-Nyquist Spatio-Temporal sampling[J]. IEEE Trans. on Signal Processing, 1994, 42 (10):2781 - 2794.
  • 4McCormick W S, Miller D F, Tsui J. Resolution of a 2π ambiguity problem in multiple frequency spectral estimation [J]. IEEE Trans. on Aerospace and Electronic System, 1995, 31 (1):2-8.
  • 5Juha T K, Jyrki J. Sinusoidal frequency estimation by signal subspaee approximation[J]. IEEE Trans. on Signal Processing, 1992, 40(12):2961-2972.
  • 6Kundu D. Modified MUSIC algorithm for estimating DOA of signals[J]. Signal Processing, 1996, 48(1) : 85 - 90.
  • 7Kaveh M, Barabell A J. The statistical performance of the MUSIC and the minimum-norm algorithm in resolving plane waves in noise[J]. IEEE Trans. on ASSP, 1986, 34:331 - 341.
  • 8Haykin S. Advances in spectrum analysis and array processing, Volume Ⅱ. New Jerey: Prentice-Hall, 1991: 263 - 293.
  • 9Goldstein J S, Reed I S, Scharf L. A multistage representation of the wiener filter based on orthogonal projeetions[J]. IEEE Trans. on Information Theory, 1998, 44(7): 2943 - 2959.
  • 10Ricks D, Goldstein J S. Efficient implementation of multistage adaptive weiner filters[C]// Antenna Applications Symposium, Allerton Park, IL,USA, 2000 : 29 - 41.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部