期刊文献+

面向高维数据集的近邻顺序查询方法

Sequential Search Method for Nearest Neighbor Query in High-Dimensional Dataset
下载PDF
导出
摘要 对顺序索引方法进行了研究,提出一种基于向量近似的高维顺序索引结构,该结构顺序访问部分文件就能完成k近邻查询。在查询过程中依据投影值来终止查询过程,依据距离来排除不匹配的数据。为进一步降低数据访问率,采用椭圆体聚类算法对数据集进行划分。新索引结构支持以多个顺序访问过程完成k近邻查询,能够同时降低查询过程中的I/O开销和CPU开销。在大型高维图像特征库上的实验表明,新的高维索引结构的查询性能优于其他高维索引方法。 The sequential index method is studied. A new high-dimensional sequential indexing structure based on vector approximation is presented, in which only a small set of approximate vectors are sequentially accessed during the query. Two one-dimensional mapping values, projection value used for terminating the searching process and the distance used to reject impossible candidate points, are presented to improve the searching speed. To reduce the data points need to be accessed, the dataset is partitioned into some ellipsoid shaped clusters. The k-nearest neighbor search is composed of several sequentially scanning in the new index structure, which can reduce both the computational CPU cost and I/O cost. The experimental results on large image database are indicative of the effectiveness of the approach.
出处 《计算机科学与探索》 CSCD 2010年第9期840-849,共10页 Journal of Frontiers of Computer Science and Technology
基金 中央高校基本科研业务费专项资金No.JY10000903009~~
关键词 高维索引 K近邻查询 椭圆体聚类 顺序查找 high-dimensional indexing k-nearest neighbor search ellipsoid shaped clustering sequential scan
  • 相关文献

参考文献17

  • 1Bohm C, Berchtold S, Keim D. Searching in high- dimensional spaces-index structures for improving the performance of multimedia databases[J]. ACM Computing Surveys, 2001, 33(3): 322-373.
  • 2Weber R, Schek H J, Blott S. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C]//Proceedings of the 24th International Conference on VLDB, 1998: 194-205.
  • 3Tao Yufei, Yi Ke, Sheng Cheng, et al. Quality and efficiency in high-dimensional nearest neighbor search[C]// Proceedings of the 35th International Conference on SIGMOD, 2009: 563-576.
  • 4Lejesk H, Asmundsson F H, Jonsson B, et al. NV-tree: An efficient disk-based index for approximate search in very large high-dimensional collections[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(5): 869-883.
  • 5Jagadish H V, Ooi B C, Tan K L, et al. iDistance: An adaptive B+-tree based indexing method for nearest neighbor search[J]. ACM Trans on Database Systems, 2005, 30(2): 364-397.
  • 6Blott S, Weber R. What's wrong with high-dimensional similarity search[C]//Proceedings of the 34th International Conference on VLDB, 2008.
  • 7Ferhatosmanoglu H, Tuncel E, Agrawal D. Vector approximation based indexing for non-uniform high dimensional data sets[C]//Proc of the ACM Int'l Conf on Information and Knowledge Management(CIKM 2000). New York: ACM, 2000:202-209.
  • 8叶航军,徐光祐.基于矢量量化的快速图像检索[J].软件学报,2004,15(5):712-719. 被引量:11
  • 9董道国,梁刘红,薛向阳.VAR-Tree——一种新的高维数据索引结构[J].计算机研究与发展,2005,42(1):10-17. 被引量:9
  • 10Cui Jiangtao, Zhou Shuisheng, Sun Junding. Efficient high- dimensional indexing by sorting principal component[J]. Pattern Recognition Letters, 2007, 28(12): 2412-2418.

二级参考文献29

  • 1N. Beckmann, H. P. Kriegel, R. Schneider, et al.. The R-tree: An efficient and robust access method for points and rectangles. The SIGMOD Conf, Atlantic, NJ, 1990.
  • 2D. A. White, R. Jain. Similarity indexing with the SS-tree. The 12th Int'l Conf. on Data Engineering, New Orleans, LA, 1996.
  • 3N. Katayama, S. Satoh. The SR-tree: An index structure for high dimensional nearest neighbor queries. The ACM SIGMOD Int'l Conf. on Management of Data, Tucson, Arizon, USA,1997.
  • 4J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic indexes. The ACM SIGMOD Int'l Conf. on Management of Data, Ann Arbor, Michigan, 1981.
  • 5R. Weber, H. J. Schek, S. Blott. A quantitative analysis and performance study for similarity-search methods in highdimensional spaces. The 24th Int'l Conf. on Very Large Databases, New York, San Jose, California, 1998.
  • 6N. Roussopoulos, S. Kelley, F. Vincent. Nearest neighbor queries. The ACM SIGMOD Int'l Conf. on Management of Data, San Jose, California, 1995.
  • 7S. Berchtold, C. Bohm, D. A. Keim, et al. A cost model fornearest neighbor search in high-dimensional data space. In: Proc.of the 16th ACM PODS. Tucson, Arizon, 1997. 78-86.
  • 8T. Yoshida, H. Akama, N. Taniguchi, et al. Similiary search index using vector approximation VA-Tree. 2000. http://www. ipsj. or. jp/members/Trans/Eng/02/2000/4106/article002.html.
  • 9D. A. Manolescu. Feature extraction--A pattern for information retrieval. The 5th Pattern Languages of Programming,Monticello, Illinois, 1998.
  • 10A. Guttman. R-trees: A dynamic index structure for spatial searching. The ACM SIGMOD Int'l Conf. on Management of Data, Boston, MA, 1984.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部