期刊文献+

列存储数据查询中的连接策略选择方法 被引量:4

A Selection Method of Join Strategy in Column Store Based Query
下载PDF
导出
摘要 列的连接策略优化是列存储数据查询中的重要问题。现有的列存储系统中,列的连接存在策略单一,缺少优化处理,无法满足复杂查询等缺陷。针对这些问题,提出一种连接策略选择方法。该方法首先定义简单规则过滤代价过大的查询计划,生成候选查询计划树。进而根据动态Huffman树原理提出动态优化树算法,对候选查询计划树中的查询执行顺序进行改进。根据列存储数据的特点,候选计划中每个连接节点的执行策略被归纳为两种:串行连接和并行连接。在此基础上构建代价估计模型,集中针对这两种连接策略进行代价估计和策略选择,从而以较小的时间复杂度获得优化的查询执行策略。 The join strategy optimization among columns is the most important problem in column store based queries. Current column-oriented systems use single join strategy through a whole query, with less optimization, so the performance remains dissatisfactory. A selection method of join strategy is presented. Firstly, the query plans with too much cost is removed by defining several simple rules, and the candidate query plan tree is obtained. Then the dynamic optimization algorithm is proposed to improve the candidate query plan under the principle of Huffman tree. According to the column-oriented data storage characteristics, the join execution for each join node in the plan can be summarized into two ways: Pipeline strategy and parallel strategy. A cost model is then proposed to select the optimal strategy by estimating the cost of the pipeline and parallel strategies with low time complexity.
出处 《计算机科学与探索》 CSCD 2010年第9期850-858,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.60773100~~
关键词 列存储 连接策略 查询优化 基于代价 column store join strategy query optimization cost-based
  • 相关文献

参考文献17

  • 1Stonebraker M, Abadi D J, Batkin A, et al. C-Store: A column-oriented DBMS[C]//Proceedings of the 31 st Very Large Data Base Conference. Trondheim, Norway: VLDB Endowment, 2005: 553-564.
  • 2MacNicol R, French B. Sybase IQ multiplex - Designed for analytics[C]//Proceedings of the 30th Very Large Data Base Conference. Toronto, Canada: VLDB Endowment, 2004: 1227-1230.
  • 3Boncz P A. Monet: A next-generation DBMS kernel for query-intensive applications[D]. Amsterdam: Universiteit van Amsterdam, 2002.
  • 4Abadi D J. Query execution in column-oriented database systems[D]. Boston: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2008.
  • 5Abadi D J, Madden S R, Hachem N. Column-stores vs. row-stores: How different are they really?[C]//Proceedings of the 2008 ACM SIGMOD International Conference Vancouver, Canada: ACM, 2008: 967-980.
  • 6Idreos S, Kersten M L, Manegold S. Self-organizing tuple reconstruction in column stores[C]//Proceedings of the 35th SIGMOD International Conference. Providence, Rhode, Island: ACM, 2009.
  • 7Ailamaki A, Dewitt D J, Hill M D, et al. Weaving rela- tions for cache performance[C]//Proceedings of the 27th Very Large Data Base Conference. San Francisco: Morgan Kaufmann Publishers Inc, 2001 : 169-180.
  • 8Hankins R, Patel A. Data morphing: An adaptive, cache-conscious storage technique[C]//Proceedings of the 29th Very Large Data Base Conference. Berlin, Germany: VLDB Endowment, 2003: 417-428.
  • 9Turner P M J, Hammond R, Cotton E A DBMS for large statistical database[C]//Proceedings of the 5th Very Large Data Base Conference. Rio de Janeiro, Brazil: VLDB Endowment, 1979: 319-237.
  • 10Copeland G P, Khoshafian S N. A decomposition storage model[C]//Proceedings of SIGMOD International Conference. Austin, Taxes: ACM, 1985: 268-279.

同被引文献4

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部