期刊文献+

细胞黏附斑边值问题不是反问题

The Boundary Value Problem of Focal Adhesions of Cells Is Not Inverse Problem
下载PDF
导出
摘要 细胞黏附斑边界的位移场可以借助纳米技术测量,进而由此确定黏附斑域内应力场.目前这一领域的研究者普遍将这后一步骤当作"反问题"去处理.作者将求位移边值问题的解析方法和数值方法,用于确定细胞黏附斑域内应力场,证明它是正问题,而不是反问题.并给出用复变函数方法求解,得到圆形、椭圆形和多角形单黏附斑问题的精确分析解.阐述了对于多黏附斑问题和任意形状多黏附斑问题,无论是连续或离散位移边界条件,用边界积分方程-边界元方法求解,确定细胞黏附斑域内应力场也是正问题,而不是反问题. It is proved that the boundary value problem of focal adhesions of cells is not so-called inverse problem and proposes direct methods for the stress analysis on focal adhesions of cell locomotion.The problem needs not,like the former works,to reduce to inverse problem for solving.It is well-known that the inverse problem is ill-posed,and causes quite complicated and unstable problems.The direct formulations here are well-posed and very easy to realize and can exactly treat more complex focal adhesion problems of cells,in particular,for single focal adhesion problems the closed form analytic solutions are available,which can exactly explore the effect of configuration of focal adhesions.
作者 范天佑 范蕾
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第7期758-760,共3页 Transactions of Beijing Institute of Technology
基金 德国洪堡基金资助项目~~
关键词 细胞黏附斑 边值问题 反问题 正问题 解析解 数值解 focal adhesions of cells boundary value problem ill-posed problem well-posed problem analytic solutions numerical solutions
  • 相关文献

参考文献12

  • 1Dembo M, Wang Y L. Stresses at the cell-to-substrate interface during locomotion of fibroblast[J].Biophys J, 1999,76:2307 - 2315.
  • 2Schwarz U S, Balaban N G, Riveline D, et al. Calculation of forces at focal adhesions from elastic substrte data[J]. Biophys J, 2002,83:1380-1394.
  • 3Merkel R, Kirchgessner N, Cesa C M, et al. Cell force microscopy on elastic layers of finite thickness[J]. Biophys J, 2007, 93:3314 -3323.
  • 4Sabass B, Garde M L, Waterman C M, et al. High resolution traction force based on experimental and computational advances[J]. Biophys J, 2008,94 : 207 - 220.
  • 5Ambrosi D. Cellular traction as an inverse problem[J]. SIAM J Appl Math, 2006,66..2049 - 2060.
  • 6Ambrosi D, Duperray A, Peschetola V, et al. Traction patterns ot tumor cells[J]. J Math Biol, 2009, 58: 163 - 181.
  • 7Bischofs I B, Schmidt S S, Schwarz U S. Effect of geometry and rigidity on cellular force distributions [J]. Phys Rev Lett, 2009,103:048101.
  • 8Muskhelishvili N I. Some basic problems of mathematical theory of elasticity[M]. Noordhoff: Groningen, 1953.
  • 9Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics[J]. Quart Appl Math, 1967,25:83 - 95.
  • 10FanTY HahnHG TenihneffD etal.The boundary integral equations method in static and dynamic fracture mechanicscomputer realization illustrated examples and comments.北京工业学院学报,1984,4(3):1-24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部