期刊文献+

基于数据驱动模型的潮位和潮流预测方法研究 被引量:1

Tidal Level and Current Prediction on the Basis of Data-Driven Model
下载PDF
导出
摘要 为解决工程海域潮位、潮流资料不足给海洋工程设计和数学模型建立带来的不确定性,根据单测站潮位潮流的自相关性、对应测站潮位或潮流以及潮位与潮流之间的互相关性,建立基于数据驱动模型人工神经网络的单测站潮位、潮流(流速、流向)预测模型;多测站潮位、潮流对应预测模型;潮位与潮流对应预测模型.以复杂海况下的实测潮位、潮流资料进行模型验证,重现了潮位、潮流自身及相互之间的非线性映射关系.模型预测结果与现场实测数据的比较及其误差分析表明,该模型具有结构简单、精度高的优点,适用于解决工程实际问题. The insufficiency of tidal level and current data near the ocean engineering waters may bring uncertainty for ocean engineering design and numerical model construction.To solve this problem,some of necessary prediction models are developed,including one site tidal level or current(current velocity and current direction) prediction model,multi-site tidal level or current prediction model,and tidal level-current prediction model.The construction of those models is based on the back propagation(BP) artificial neural network(ANN) and the properties of self-correlation of single site and cross-correlation among multi-sites or between tidal level and current.Field data under complex geography and hydrodynamic condition are used to validate the performance of the presented data-driven models.It is indicated that the nonlinear mapping relation between tidal level and tidal current can be reproduced by those models.The comparison between the numerical results and field-data verifies that the developed models have the advantages of simple structure and good precision.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第7期864-868,共5页 Transactions of Beijing Institute of Technology
基金 中央级公益性科研院所基本科研业务费专项基金资助项目(TKS090204 TKS100217)
关键词 数据驱动模型 人工神经网络 海洋工程 潮位 潮流 data-driven model artificial neural network ocean engineering tidal level current
  • 相关文献

参考文献8

  • 1Solomatine D P. Data-driven modelling: paradigm, methods, experiences[C]//Proc 5th International Conference on Hydroinformaties. Cardiff, UK.. [s. n. ], 2002:757 - 763.
  • 2Deo M C,Naidu S C. Real time wave forecasting using neural networks[J]. Ocean Engineering, 1999,26(3) :191- 203.
  • 3Lee T L, Tsai C P, Jeng D S, et al. Neural network for the prediction and supplement of tidal record in Taichung Harbor, Taiwan[J]. Advances in Engineering Software, 2002,33(6):329 - 338.
  • 4Huang W R, Catherine M, Nicholas K, et al. Development of a regional neural network for coastal water level predictions [J]. Ocean Engineering, 2003,30 (17) : 2275 - 2295.
  • 5胡继洋,李启华,王宇浩.基于神经网络的潮汐预报方法初探[J].海洋测绘,2005,25(6):48-50. 被引量:2
  • 6李明昌,梁书秀,孙昭晨.人工神经网络在潮汐预测中应用研究[J].大连理工大学学报,2007,47(1):101-105. 被引量:20
  • 7Lee T L, Jeng D S. Application of artificial neural networks in tide forecasting[J]. Ocean Engineering, 2002, 29(9) :1003 - 1022.
  • 8Center for Operational Oceanographic Products and Services, National Oceanic and Atmospheric Adminis tration. Tides and currents' data[DB/OL]. [2006-06-25]. http..//eo-ops, nos. noaa. gov.

二级参考文献16

  • 1文新辉,陈开周.一种基于神经网络的非线性时间序列模型[J].西安电子科技大学学报,1994,21(1):73-78. 被引量:10
  • 2王长海.潮汐调和分析的一种模式[J].海洋预报,1995,12(4):71-76. 被引量:17
  • 3HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 4潮汐测量[M].海军司令部航海保证部,1997.
  • 5DARWIN G H.On an apparatus for facilitating the reduction of tidal observations[J].Proc Royal Soc London A,1892,52:345-376
  • 6DOODSON A T.The analysis of observations[J].Phil Trans Roy,1928,A265:223-279
  • 7YEN P H,JAN C D,LEE Y P,et al.Application of Kalman filter to short-term tide level prediction[J].J Waterway Port Coastal Ocean Eng,1996,122(5):226-231.
  • 8TSAI C P,LEE T L.Back-propagation neural network in tidal-level forecasting[J].J Waterway Port Coastal Ocean Eng,1999,125(4):195-202
  • 9LEE T L,JENG D S.Application of artificial neural networks in tide forecasting[J].Ocean Eng,2002,29(9):1003-1022
  • 10TSAI C P,LIN C,SHEN J N.Neural network for wave forecasting among multi-stations[J].Ocean Eng,2002,29(13):1683-1695

共引文献20

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部