期刊文献+

高负荷低展弦比涡轮流动机理 被引量:2

Flow mechanism of high load and low aspect ratio turbine
原文传递
导出
摘要 为满足固体推进剂涡轮火箭发动机高负荷、高效率、低展弦比涡轮设计要求,对发动机涡轮进行初步设计.采用哈尔滨工业大学编制的叶型编辑程序,设计单级膨胀近似为4的涡轮动静叶叶型,采用NUMECA软件对所设计的涡轮动静叶流场进行数值计算.结果表明:高膨胀比涡轮动静叶整个流道内均出现超音速流动,采用缩放通道可减小激波损失;静叶出口马赫数较高,产生的尾缘激波与相邻叶栅吸力面相交,使吸力面马赫数波动,产生逆压梯度,增大了流动损失;在动叶中,端壁附面层内二次流沿壁面汇聚到吸力面中部,使吸力面中部损失增大. To satisfy turbine design requirements for solid propellant air-turbo-rocket,a high load,high efficiency and low aspect ratio turbine was primarily designed.The stator and rotor profiles of the turbine whose expansion ratio was about four was primarily designed by using the profiles edit program compiled by Harbin Institute of Technology.The flow fields of the stator and rotor were simulated with the NUMECA software.Results indicate that supersonic flow exists in the stator and rotor flow-path of high expansion ratio turbine,and shock wave loss can be reduced with converging-diverging flow-path.The outlet Mach number of stator cascade is relatively high,where the trailing edge shock wave intersects with suction surface of the neighboring cascade,so that suction surface Mach number fluctuates,and an adverse pressure gradient forms and flow loss increases.In rotor cascade,the second flows in the end wall boundary layer collect together to the mid section of suction surface which leads to the flow loss increasing.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2010年第3期97-101,共5页 Journal of Dalian Maritime University
关键词 涡轮 高负荷 低展弦比 气动设计 turbine high load low aspect ratio aerodynamic design
  • 相关文献

参考文献7

  • 1曾军,向传国,程信华.跨声速涡轮叶栅三维流场的数值模拟[J].航空动力学报,2007,22(11):1915-1920. 被引量:5
  • 2方祥军,刘思永,王屏,张维军.大扩张通道超声高载荷对转涡轮动叶三维设计方法研究[J].航空学报,2007,28(1):25-31. 被引量:10
  • 3ROBERT D, OLIVIER B, DAVID-AUSTIN P, et al. Turbocharger power for future railway applications [ C]// ASME, Internal Combustion Engine Division (Publication) ICE. Erie, Pennsylvania, United states. ASME,2003, 40: 73-82.
  • 4IOANNIS V, MARTIN S, PIERRE J. Performance and experience of the ABB TPL65VA turbocharger with variable turbine geometry on medium-speed gas engines for generator operation[C]//ASME, Internal Combustion Engine Division (Publication) ICE. Long Beach, California, United states: ASME, 2004: 497-507.
  • 5LISA W G, FRANK W H. Advancement of turbine aerodynamic design techniques [R]. ASME, 1993 : 93-GT-370.
  • 6YAMAMOTO A, USUI H, TAN C, et al. Research on ultra-highly loaded turbine [C]//2nd Japan ESPR Meeting. Tokyo, Japan : ESPR, 2004:54-55.
  • 7周凡贞,王世勇,丁晓娟,冯国泰.涡轮高载荷动叶片设计及级三维流场数值分析[J].推进技术,2004,25(1):62-65. 被引量:11

二级参考文献15

  • 1方祥军,刘思永,王屏,张维军.一种低压无导叶对转涡轮特性分析与设计[J].推进技术,2005,26(3):234-238. 被引量:7
  • 2Davidson D P,Finke A K.The design and fabrication of a small highly instrumented counterrotating turbine rig[R].ASME 93-GT-196,1993.
  • 3Yamamoto A,Outa A.Low-speed annular cascade tests of an ultra-highly loaded turbine with tip clearance,Part 1-near design incidence[R].ASME 99-GT-212,1999.
  • 4Denton J D.The calculation of three-dimensional viscous flow through multistage turbomachines[J].ASME Journal of Turbomachinery,1992,114,18-26.
  • 5Adamczyk J J.Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design[R].ASME 99-GT-80,1999.
  • 6CFX-TASCflow User Documentation[M].Canada:AEA Technology Engineering Software Ltd.,1998.
  • 7Numeca-user's Help[M].Belgium:Numeca International Co.2006.
  • 8陈懋章.叶轮机气动力学研究及其发展趋势[C]∥中国航空学会航空百年学术论坛.北京:中国航空学会动力专业分会,2003,10.
  • 9Jiang Z L.Experimental investigation of high pressure turbine cascade (G3)[R].GTE YGH-019-W017,1999,11.
  • 10Sieverding C H,Art T,Denos R,et al.Investigation of the flow field downstream of a turbine trailing edge coolant nozzle guide vane[R].ASME 94-GT-209.

共引文献22

同被引文献15

  • 1Malzacher F J, Gier J, Lippl F. Aerodesign and testing of an aero-mechanically highly loaded LP turbine [C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, andAir, Glasgow, UK, 2010.
  • 2Schmitz J T, Morris S C, Ma R, et al. Highly loaded low-pressure turbine: design, numerical, and experimental analysis[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, andAir, Glasgow, UK, 2010.
  • 3Houtermans R, Coton T, Arts T. Aerodynamic performance of a very high lift low pressure turbine blade with emphasis on separation prediction[J]. Journal of Turbomachinery, 2004, 126(3): 406-13.
  • 4McClelland C, Davis R L, Clark J P. Flow analysis of a highly loaded low-pressure turbine[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, No. AIAA 2011-302.
  • 5Aguilar F, Davis R L, Clark J P. AerodynaJ'aic simulation of flows in a highly loaded turbine[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 2011.
  • 6Hjarne J, Chemoray V, Larsson J, et al. Numerical validations of secondary flows and loss development downstream of a highly loaded Low pressure turbine outlet guide vane cascade[C]/haroceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air,No. GT2007- 27712.
  • 7Taremi F, Sjolander S A, Praisner T J. Measurements of endwall flows in transonic linear turbine cascades: part II --high flow turning[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, No. GT2010-22760.
  • 8Knezevici D C, Sjolander S A, Praisner T J, etal. Measurements of secondary losses in a turbine cascade with the implementation of nonaxisymmetfic endwall contouring[J]. Journal of Turbomachinery, 2010, 132(1): 011013-1, 011013-10.
  • 9Wang Haiping, Dlson S J, Goldstein R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blades[R]. ASME Paper, 95'GT-7.
  • 10Goldstein R J, Spores R A. Turbulent transport on the end wall in the region between adjacent turbine blades [J]. Journal of Heat Transfer, 1988, 110(4a): 862-896.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部