期刊文献+

一种提高检测效率的V-detector优化算法的设计

Design of optimized V-detector algorithm with higher detection efficiency
下载PDF
导出
摘要 实值阴性选择算法V-detector在产生检测器时不能确保检测器具有较大的覆盖范围,其结果是检测器集合中的检测器数量过多,检测效率较低。为提高检测效率,提出了V-detector优化算法,一方面,通过合理确定检测器的中心点位置及检测半径,扩展了检测器的覆盖范围;另一方面,优化算法采用假设检验的判定方法判断检测器集合对非自体空间的覆盖率。假设检验融合到检测器集合的生成进程中,在确保检测器集合满足覆盖率要求的条件下,减少了检测器集合中的检测器数量。实验结果表明,与原算法相比,优化算法使检测器集合中检测器的数量大幅度下降,检测效率得到提高。 V-detector algorithm is unable to guarantee a large coverage for generated detector.The shortcoming usually results in a large number of detectors in the detector sets and low detection efficiency.An optimized V-detector algorithm was proposed.In the optimized algorithm,a detector was generated on the basis of a randomly chosen uncovered non-self sample,and the detector generation process ensured the detector covered the non-self sample and extended the detector's coverage by determining the detector's center and detection radius reasonably.Meanwhile,hypothesis testing process was used to estimate the coverage of a detector set,and hypothesis testing process was integrated with detector generation process to ensure the generated detector set fully covered the non-self region,and reduced the number of detectors in the detector set.Experimental results indicate that compared with the V-detector algorithm,the optimized algorithm generates a much smaller detector set and increases the detection efficiency.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2010年第4期408-412,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家973计划资助项目(2007CB310804)
关键词 人工免疫系统 阴性选择算法 检测效率 假设检验 artificial immune system negative selection algorithm detection efficiency hypothesis testing
  • 相关文献

参考文献8

  • 1TIMMIS J, HONE A. Theoretical advances in artificial immune systems[J]. Theoretical Computer Science, 2008, 403(1):11-32.
  • 2STIBOR T. Foundations of r-contiguous matching in negative selection for anomaly detection[J]. Natural Computing, 2009, 8(3):613-641.
  • 3STIBOR T, TIMMIS J, ECKERT C. The link between r-contiguous detectors and k-CNF satisfiability [C]. Proceedings of congress on evolutionary computation. Vancouver: IEEE Press, 2006.
  • 4FABIO G, DASGUPTA D, GOMEZ J. The effect of binary matching rules in negative selection[C]. Proceedings of the Genetic and Evolutionary Computation Conference. Chicago: Springer Berlin, 2003.
  • 5FABIO G, DASGUPTA D. Anomaly detection using real-valued negative selection[J]. Genetic Programming and Evolvable Machines, 2003, 4(4): 383-403.
  • 6JI Z, DASGUPTA D. Real-valued negative selection algorithm with variable-sized detectors[C]. Proceedings of Genetic and Evolutionary Computation. Seattle : Springer-Verlag, 2004.
  • 7THOMAS H C, CHARLES E L. Introduction to algorithms[M]. 北京:高等教育出版社,2007.
  • 8JI Z, DASGUPTA D. Estimating the detector Coverage in a negative selection algorithm[C]. Proceedings of Genetic and Evolutionary Computation. Washington:CA, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部