期刊文献+

基于CVaR的投资组合优化模型及实证 被引量:3

Optimal Model of Investment Portfolio Based on CVaR and Empirical Analysis
下载PDF
导出
摘要 以条件风险价值CVaR为风险度量,建立以CVaR为目标函数,VaR为约束条件的二次规划模型,该模型给出了在决策者可以接受的VaR风险水平下,使得CVaR为最小值的投资组合最优选择;实例表明投资组合的最优选择降低了投资组合发生灾难性风险的可能性。 Taking conditional value at risk,CVaR,as risk measurement,this paper sets up a quadratic program model with CVaR as objective function and with VaR as constraint condition,and this model gives optimal choice of investment portfolio that makes CVaR minimum value under the condition of VaR risk level that decision-makers can accept.The examples show that this model has obtained the best choice of investment portfolio and reduced the possibility of catastrophic risk of the portfolio.
作者 王宝森 梁奉
出处 《重庆工商大学学报(自然科学版)》 2010年第3期213-217,222,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 北京物资学院科研基地项目(WYJD200903) 北京市属高等学校人才强教计划资助项目
关键词 条件风险价值CVaR 风险价值VAR 投资组合优化 conditional value at risk(CVaR) value at risk(VaR) investment portfolio optimization
  • 相关文献

参考文献9

  • 1迟国泰,姜大治,奚扬,林建华.基于VaR收益率约束的贷款组合优化决策模型[J].中国管理科学,2002,10(6):1-7. 被引量:24
  • 2菲利普·乔瑞.风险价值VAR-金融风险管理新标准[M].陈跃,等译.北京:中信出版社,2005.
  • 3GOLLINGER T L, MORGAN J B. Calculation of an efficientfrontier for a commercial loan portfolio [ J ]. Journal of Portfolio Management, 1993, 19 (2): 39-49.
  • 4ALTMAB E I. Predicting finance distress of companies: revisiting the Z-score and ZETA models [ J ]. Journal of Finance, 2000, 55 (7): 18-20.
  • 5皮埃特罗·潘泽 维普·K·班塞尔 綦相 译.用VaR度量市场风险[M].北京:机械工业出版社,2001..
  • 6林旭东,巩前锦.正态条件下均值-CVaR有效前沿的研究[J].管理科学,2004,17(3):52-55. 被引量:20
  • 7迟国泰,王际科,齐菲.基于CVaR风险度量和VaR风险控制的贷款组合优化模型[J].预测,2009,28(2):47-52. 被引量:10
  • 8何琳洁 文凤华 马超群.基于一致性风险价值的投资组合优化模型研究.湖南大学学报,2006,53(1):67-70.
  • 9CAMPBELL R, HUI SMAN R, KOEDIJK K. Optimal portfolio selection in a Value--at --Risk framework [ J ]. Journal of Banking & Finance, 2001,25 : 1789-1804.

二级参考文献38

  • 1秦学志,迟国泰.多准则多目标信贷策略的动态规划方法[J].中国管理科学,2000,8(S1):18-24. 被引量:3
  • 2J P Morgan.Risk Metrics-Technical Document(4 th ed. ) [ M ] . New York: Morgan Guaranty Trust Company, 1996.
  • 3Artzner P, Delbaen F, Eber J H, Heah D. Thinking Coherently: Risk [ J ] . Mathematical Finance, 1997,(10) :33-49.
  • 4Artzner P, Delbaen F, Eber J H, Heah D. Coherent Measure of Risk [ J ] . Mathematical Finance, 1999,9(3): 203-228.
  • 5Carlo A, Claudio N, Carlo S. Expected Shortfall as a Tool for Financial Risk Management [ DB/OL ]. http: / / www. gloriamundi. org/VaR/VW, 200 1.
  • 6Frittelli, Rosazza Gianin. Putting Order in Risk Measures [ A ]. Szego G. Beyond VaR (Special Issue ) [ C ]. Journal of Banking & Finance, 2002,26(6): 263-292.
  • 7Rockfeller T, Uryasev S. Optimization of Conditional VaR [ J ]. Journal of Risk,2000,2(3) :21-24.
  • 8Rflung G Ch. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk [ A ]. Uryasev S. Probabilistic Constrained Optimizatio: Methodology and Application [ C ]. Boston: Kluwer. Academic Publishers, 2000.
  • 9Anderson F, Mausser H, Rosen D, Urasev S. Credit Risk Optimization with Conditional Value-at-Risk Criterion [ M ]. Math. Progam. Ser. B, 2000. 273-291.
  • 10Rockfeller T, Uryasev S. Conditional Value-atRisk for General Loss Distribution [ J ]. Journal of Banking & Finance, 2002, (26): 1445-1471.

共引文献58

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部