期刊文献+

1550nm波长PNP型InGaAsP-InP异质结晶体管激光器材料设计与外延生长

Design and Epitaxy of the Material for a 1550 nm PNP InGaAsP-InP Heterojunction Bipolar Transistor Laser
下载PDF
导出
摘要 基于器件模拟仿真,设计了一种PNP型1.5μm波长多量子阱InGaAsP-InP异质结晶体管激光器材料外延结构,并采用金属有机化学气相沉积外延生长.其中基区采用N型Si掺杂.因为扩散系数小,比较P型Zn搀杂具有较高的稳定性,因而较NPN结构外延材料容易获得高质量的光学有源区.由于N型欧姆接触比P型容易获得,基区搀杂浓度可以相对较低,有利于减小基区光损耗和载流子复合,从而获得较低的阈值电流和较高的输出光功率.所获得的外延材料呈现较高光-荧光谱峰值和65.1nm较低半峰宽.测试结果显示了较高的外延片光学质量. Based on device simulation,an epitaxy structure with silicon doped base of a PNP InGaAsP-InP MQW transistor laser(HBTL) at 1 550 nm is designed and realized by MOCVD.Due to its much smaller diffusion coefficient and shorter diffusion length compared to the P dopant in the NPN HBTL,silicon as N dopant in the base perform with higher stability.Therefore,the active material with higher optical quality of PNP HBTL can be obtained easier than that of NPN HBTL.In addition,B type Ohmic contact can be realized easier than P type.The N doping density can be reduced compared to NPN HBTL benefiting to reducing both the optical loss and carrier recombination in the base.And therefore,both the lower threshold and higher stimulation power of the HBTL can be obtained.The result of PL spectrum measurement of the epitaxied material shows high peak intensity and as narrow as 65.1 nm FWHM which demonstrates good optical quality of the material.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第8期1409-1412,共4页 Acta Photonica Sinica
基金 国家国际科技合作计划(2008DFA11010)资助
关键词 异质结 晶体管激光器 外延结构 掺杂扩散 量子阱退化 Transistor laser Epitaxy structure Dopant diffusion Quantum well degradation
  • 引文网络
  • 相关文献

参考文献10

  • 1HOLONYAK N J, FENG M. The transistor lasers[J]. IEEE Spectrum, 2006, 43(2): 50-55.
  • 2FARALI B, SHI Wei, PULFREY D L, et al. Analytical modeling of the transistor lasers[J]. IEEE J Selected Topics in Quantuzn Electronics, 2009, 15(3) : 594-603.
  • 3FARALI B, SHI Wei, PULFREY D L, et al. Commonemitter and common base small signal operation of the transistor lasers[J]. Appl Phys Lett, 2008, 93(14) : 143503- 143505.
  • 4SHI Wei, CHROSDOWSKI L, FARALI B, et al. Numerical study of the optical saturation and voltage control of a transistor vertical cavity surface emitting laser [J]. IEEE Photon Tech Lett, 2008, 20(24) : 2141-2143.
  • 5DUAN Zi-gang, SHI Wei, CHROSDOWSKI L, et al. Design and epitaxy of 1. 5 um InGaAsP InP MQW material for a transistor laser[J]. Opt Express, 2010, 18(2)= 1501-1509.
  • 6SUGIYAMA H, YOKOYAMA H. Diffusion behavior of delta-doped Si in InAlAs/InP heterostruetures [C]. GAAS, 2002: 23-27.
  • 7PIPREK J, ABRAHAM P, BOWERS J E, et al. Serf- consistent analysis of high-temperature effect on strained layer multiple quantum-well InGaAsP-InP lasers[J]. IEEE J Quant Electron, 2000, 36(3) : 366-374.
  • 8HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical cavity surfaceemitting lasers[J]. IEEE J Quant Electron, 1996, 32 (4) : 607-616.
  • 9LI Z M. Physical models and numerical simulation of modern semiconductor lasers[C]. SPIE, 1997, 2994: 698-708.
  • 10LIOU B T, YEN S H, YAO M W, et al. Numerical study for 1.55 um A1GalnAs/InP semiconductor lasers[C]. SPIE, 2006, 6368: 636814.
;
使用帮助 返回顶部