摘要
李寿佛,苏凯于1995年构造了一类用于求解刚性问题的并行混合方法(PHM),其计算速度与向后微分公式(BDF)基本相同,但稳定性远优于向后微分公式.本文通过适当修改PHM,构造了一类新的并行混合方法(MPHM),新方法基本保持了PHM的各种优势,尽管稳定域稍微减小,但方法的级阶和B相容阶都提高了一阶。
In 1995,Li Shoufu and Su Kai constructed a class of parallel multistep hybrid
methods(PHM s)for solving stiff differential equations.The computing speed of these methods
is almost the same as that of Backward Differentiation Formulas,whereas the stability
properities of the former are considerably superior to the later.In this paper,by modifing PHM
appropriately,we construct a new class of parallel hybrid methods(MPHM s).MPHM not only
preserves most advantager of PHM,but also has stage order,as well as B-consistency
order,one higher than that of PHM,in spite of its stability region being somewhat
smaller.Numerical experiments show that MPHM improves the computing accuracy in
comparison with PHM.
出处
《湘潭大学自然科学学报》
EI
CAS
CSCD
1999年第2期20-24,共5页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金
关键词
并行算法
多步混合方法
常微分方程
MPHM
stiff differential equations,multistep hybrid methods,parallel
algorithm