期刊文献+

时延离散广义系统稳定半径的研究

Stability radius of discrete-time descriptor systems with time-delay
下载PDF
导出
摘要 研究了时延离散广义系统在任意仿射参数扰动下的鲁棒稳定性问题.首先定义时延离散广义系统的稳定半径,同时给出时延离散广义系统稳定半径的计算公式.最后,对于系统正则指数为1的情况,给出了求解方法. In this paper,robust stability of discrete-time descriptor systems with time-delay under arbitrary affine parameter perturbations is studied.The stability radius of discrete-time descriptor systems with time-delay is defined.Then formula for the stability radius is given.At last,a solution method is put forward in case of regular systems index equal to one.
作者 李颖 林洪生
出处 《沈阳工程学院学报(自然科学版)》 2010年第3期277-280,共4页 Journal of Shenyang Institute of Engineering:Natural Science
关键词 稳定半径 时滞 离散广义系统 矩阵束 stability radius time-delay generalized discrete time system matrix pencil
  • 相关文献

参考文献8

  • 1Byers R. A bisection method for measuring the distance of a stable matrix to the unstable matrices~ J~. SIAM Journal,On Scientific and Statistical Computing, 1988:875 -881.
  • 2Hinrichsen D, Motscha. Optimization problems in the robustness analysis of linear state space systems [ R ]. Institute for Dynamische Systems, Tech. Report Nr. 169, University at Breman, 1987.
  • 3Van Load C. How near is a stable matrix to a unstable matrix[ J]. Contemporary Mathematics, 1985, (47) :465 - 477.
  • 4Byers R, Nichols N K. On the stability radius of generalized state-space systems [ J ]. Linear Algebra-App. Institute for Mathematics and Applications, University of Minnesota, Minnesota, 1992 : 988.
  • 5林洪生,李颖,刘严.离散广义系统稳定半径的研究[J].沈阳工程学院学报(自然科学版),2009,5(4):394-396. 被引量:1
  • 6Nguen Khoa son, Pham Huu anh ngoc. Robust stability of positive linear time-delay systems under affine parameter perturbation [ J ]. Acta Mathematica Vientamica, 1999, 24 (3) :353 -372.
  • 7Wim Michiels, Kirk Green, Thomas Wagenkneecht, et al. Pseudospectra and stability radii for analytic matrix functions with application to time-delay systems [ R ]. Report TW425, 2005.
  • 8Nguen Khoa son, Pham Huu anh ngoc. Stability Radii of linear discrete-time systems with delays [ J ]. Vietnam Journal Mathematics,2001,29 (4) : 379 - 384.

二级参考文献8

  • 1Byers R, Nichols N K. On the stability radius of generalized state - space systems, Linear Algebra-App [J]. Institute for Mathematics and Applications, 1992:988.
  • 2Byers R. A bisection method for measuring the distance of a stable matrix to the unstable matrices [ J ]. On Scientific and Statistical Computing, 1988:875 - 881.
  • 3Hinrichsen D,Motscha. Optimization problems in the robustness analysis of linear state space systems [J]. Institute for Dynamische Systems, 1987.
  • 4Van Load C. How near is a stable matrix to a unstable matrix [J]. Contemporary Mathematics, 1985, ( 47 ) :465 - 477.
  • 5Campbell S L. Singular Systems of Differential Equations [M]. London: Pitman, 1980.
  • 6Gantmacher F R. The theory of Matrices [M]. New York: Chelsea, 1974.
  • 7Kautsky J, Nichols N K, Chu K W E. Robust pole assignment in singular control systems[J]. Liner Algebra and Its Applications, 1989 ( 121 ):9 - 37.
  • 8Golub G H, Van Loan C. Matrix Computations [ M ]. Baltimore : The Johns Hopkins Press, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部