期刊文献+

磁场中的Klein-Gordon方程的量子与经典对应 被引量:3

Quantum and Classical Correspondence for Klein-Gordon Equation in Magnetic Field
下载PDF
导出
摘要 在量子领域,由Bohr对应原理,在大量子数情形下,量子力学应过渡到经典力学。根据Heisenberg对应原理,在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数。应用Heisenberg对应原理研究在磁场中粒子的量子经典对应问题。将Heisenberg对应原理应用到相对论领域的Klein-Gordon方程,在一个新的表象的直角坐标系中,从量子力学的矩阵元计算出带电粒子在磁场中Klein-Gordon方程的精确波函数。研究发现,在经典近似下其对应经典运动方程的解。对坐标矩阵元计算表明,在经典近似下坐标随时间周期性变化,粒子的轨道是一个圆,其对应运动形式是匀磁场中的匀速圆周运动。 In the quantum field,due to Bohr correspondence principle,quantum mechanics go to classical mechanics in large quantum number.Based upon Heisenberg correspondence principle,quantum matrix element of a Hermitian operator reduces to the coefficient of Fourier expansion of the corresponding classical quantity in the classical limit.Using Heisenberg correspondence principle,quantum-classical correspondence of particles in magnetic is studied.Applying Heisenberg correspondence principle in relativistic realm,the exact wave functions of Klein-Gordon equation are obtained for particles in magnetic with quantum matrix element in a rectangular coordinate system of new representation.It turns out that in the classical limit matrix elements of quantum operators reduces to the classical solutions and with classical approach,the coordinate is cyclical variation with time,the orbit of particles is a circle,and the movement is uniform circular motion in uniform magnetic field.
作者 张治国 吴闯
出处 《沈阳师范大学学报(自然科学版)》 CAS 2010年第3期379-382,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 辽宁省教育厅科研项目(2008689)
关键词 Heisenberg对应原理 磁场 KLEIN-GORDON方程 Heisenberg correspondence principle Klein-Gordon equation magnetic field
  • 相关文献

参考文献12

  • 1KAY K G.Exact wave functions from classical orbits.Ⅱ.The Coulomb,Morse,Rosen-Morse,and Eckart systems[J].Phys.Rev.A,2002,65(3):81-104.
  • 2LUIS A.Phase-space distributions and the classical component of quantum observables[J].Phys.Rev.A,2003,67(6):609-612.
  • 3LUIS A.Classical mechanics and the propagation of the discontinuities of the quantum wave function[J].Phys.Rev.A,2003,67(2):924-927.
  • 4MAKOWSKI A J,GORSKA K J.Bohr's correspondence principle:The cases for which it is exact[J].Phys.Rev.A,2002,66(6):71-77.
  • 5贾艳伟,刘全慧,彭解华,王鑫,沈抗存.Heisenberg对应原理下氢原子1/r矩阵元的量子-经典对应[J].物理学报,2002,51(2):201-204. 被引量:8
  • 6ZHANG Zhi-Guo.Exact solutions of time-dependent Dirac equations and the quantum-classical correspondence[J].Phys.Scr.,2006,74(2):218-220.
  • 7ZHANG Zhi-guo.Complete solutions for a class of time-dependent Dirac equations[J].Phys.Scr.,2007,76(4):349-353.
  • 8GREENBERG W R,KLEIN A.Invariant Tori and Heisenberg Matrix Mechanics:A New Window on the Quantum-Classical Correspondence[J].Phys.Rev.Lett.,1995,75(7):1244-1247.
  • 9HUANG X Y.New suggestion for free particles[J].Phys.Lett.A,1986,115(7):310-314.
  • 10MOREHEAD J J.Semiclassical integrable matrix elements[J].Phys.Rev.A,1996,53(3):1285-1294.

二级参考文献14

  • 1王光辉,郭康贤,郭旗.非对称量子阱中线性和三阶非线性光吸收系数的研究[J].量子电子学报,2004,21(4):429-433. 被引量:5
  • 2黄湘友,刘全慧,田旭,裘忠平.均匀磁场中带电粒子运动的双波描述[J].物理学报,1993,42(2):180-187. 被引量:22
  • 3刘全慧.笛卡儿坐标下空间转子体系的双波函数描述[J].物理学报,1993,42(4):522-527. 被引量:16
  • 4CHOI K K,LEVINE B F,MALIK R J,et al.Periodic negative conductance by sequential resonant tunneling through an expanding high-field super lattice domain[J].Phys.Rev.B,1987,35(8):4172-4175.
  • 5KHURGIN J.Second-order nonlinear effects in asymmetric quantum-well structures[J].Phys.Rev.B,1988,38(6):4056-4059.
  • 6YOO S J B,FEJER M M,BYER R L,et al.Second-order Susceptibility in asymmetric quantum wells and its control by proton bombardment[J].Appl.Phys.Lett,1991,38(6):1724-1726.
  • 7PAN Shaohua.Optical saturation of intersubband absorption in semiconductor superlattice[J].Phys.Rev.B,1991,44(15):8165-8170.
  • 8ROSENCHER E,BOIS P H.Model system for optical nonlinearities:Asymmetric quantum wells[J].Phys.Rev.B,1991,44(20):11315-11320.
  • 9ZHANG Chaojin,GUO Kangxian.Polaron effects on the optical rectification in asymmetrical semiparabolic quantum wells[J].Physica B,2006,33(2):363-366.
  • 10TSANG L,CHUANG S L,LEE S.Second-order nonlinear optical susceptibility of a quantum well with an applied electric field[J].Phys.Rev.B,1990,41(9):5942-5945.

共引文献9

同被引文献31

  • 1何兵,应和平,季达人.X-Y-Z模型——非各向同性反铁磁Heisenberg系统的自旋波解[J].物理学报,1996,45(3):522-527. 被引量:8
  • 2甘在会,张健.一类耦合非线性Klein-Gordon方程组的驻波[J].数学物理学报(A辑),2006,26(4):559-569. 被引量:1
  • 3AharoniA.铁磁性理论导论[M].杨正,译.兰州:兰州大学出版社,2007:26-93.
  • 4PITTMAN T B, SHIH YANHUA, STREKALOV D V. Observation of Two-photon "Ghost" interference and Diffraction[J]. Phys. Rev lett, 1994,74 (18) : 3600 - 3603.
  • 5WEN J M, XU P, MORTON H, et al. Transverse correlations in triphoton entanglement: Geometrical and physical optics[J]. Phys. Rev. A, 2007,76(2),023828.
  • 6STREKALOV D V, PITTMAN T B, SHIH YANHUA. What can we leam about single photons in a two-photon interference experiment[J]. Phys. Rev A, 2005,57( 1 ) : 1 - 4.
  • 7MILENA D'ANGELO, SHIH YANHUA. Quantum Irnaging[J]. Phys. lett, 2005,2(12):1-79.
  • 8ADEL JOOBEUR, SALEH BAHAA E A, LARCHUK TODD S. Coherence properties of entangled light beams generated by parametric down-eoversion: Theory and Experiment[J]. Phys. Rev A, 1996,53(6) :4360 - 4371.
  • 9GATTI A, BRAMBILLA E, BACHE M. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Phys. Rev. lett, 2004,93(4),093602.
  • 10ABOURADDY A F, SALEH B E A, ALEXANDER V. Sergienko. Entangled-photonFourier optics[J]. J. Opt. Soc. Am. B, 2002,19(5) :1174- 1184.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部