摘要
在量子领域,由Bohr对应原理,在大量子数情形下,量子力学应过渡到经典力学。根据Heisenberg对应原理,在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数。应用Heisenberg对应原理研究在磁场中粒子的量子经典对应问题。将Heisenberg对应原理应用到相对论领域的Klein-Gordon方程,在一个新的表象的直角坐标系中,从量子力学的矩阵元计算出带电粒子在磁场中Klein-Gordon方程的精确波函数。研究发现,在经典近似下其对应经典运动方程的解。对坐标矩阵元计算表明,在经典近似下坐标随时间周期性变化,粒子的轨道是一个圆,其对应运动形式是匀磁场中的匀速圆周运动。
In the quantum field,due to Bohr correspondence principle,quantum mechanics go to classical mechanics in large quantum number.Based upon Heisenberg correspondence principle,quantum matrix element of a Hermitian operator reduces to the coefficient of Fourier expansion of the corresponding classical quantity in the classical limit.Using Heisenberg correspondence principle,quantum-classical correspondence of particles in magnetic is studied.Applying Heisenberg correspondence principle in relativistic realm,the exact wave functions of Klein-Gordon equation are obtained for particles in magnetic with quantum matrix element in a rectangular coordinate system of new representation.It turns out that in the classical limit matrix elements of quantum operators reduces to the classical solutions and with classical approach,the coordinate is cyclical variation with time,the orbit of particles is a circle,and the movement is uniform circular motion in uniform magnetic field.
出处
《沈阳师范大学学报(自然科学版)》
CAS
2010年第3期379-382,共4页
Journal of Shenyang Normal University:Natural Science Edition
基金
辽宁省教育厅科研项目(2008689)