摘要
设N为平面上2n个固定点的集合,M为n-2个可动点的集合,E为连接这些点的边的集合(也称作拓扑).设E为点集V上的满4度Steiner拓扑(满Steiner拓扑也就是满足固定点的度为1,可动点的度为4的树的拓扑),H(E)为包含E在内的所有E的退化拓扑的集合.文中构造了计算拓扑属于H(E)的4度Steiner树算法,并证明了算法的时间复杂性是O(n2).
Let N denote a set S of 2 n fixed points and M a set of m moving points in the plane. A set E of edges connecting these points is called a topology. Let E be a full 4 degree Steiner topology (i.e. the topology of the tree which contains fixed points of degree 1 and moving points of degree 4) on the set V such that the set of topology H(E) includes E and it′s degenerate cases. An algorithm is presented for finding a 4 degree Steiner tree whose topology belongs to H(E) . The time complexity of the algorithm is O(n 2) .
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
1999年第6期90-93,共4页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金