摘要
The biocompatibility of surface-modified biphasic calcium phosphate (mBCP)/poly-L-Lactide (PLLA) biocomposite was investigated through a series of experiments in vitro and in vivo. Acute toxicity and short term systemic toxicity experiments revealed no toxicity of the materials. Hemolysis assay indicated the good blood compatibility of the composite. In cytotoxicity assay, L929 mouse fibroblasts could well differentiate and proliferate. Animal experiments in vivo were.performed by implanting the materials into rabbits muscle for 8 weeks. The decreasing of inflammatory cells, the building of fibrous tissue layer as well as the growing of blood cells into materials indicated the nontoxicity of the composite. Based on the experiment results, surfacemodified BCP/PLLA biocomposite is proven to have superior biocompatibility, which would be a promising bone repairing material.
The biocompatibility of surface-modified biphasic calcium phosphate (mBCP)/poly-L-Lactide (PLLA) biocomposite was investigated through a series of experiments in vitro and in vivo. Acute toxicity and short term systemic toxicity experiments revealed no toxicity of the materials. Hemolysis assay indicated the good blood compatibility of the composite. In cytotoxicity assay, L929 mouse fibroblasts could well differentiate and proliferate. Animal experiments in vivo were.performed by implanting the materials into rabbits muscle for 8 weeks. The decreasing of inflammatory cells, the building of fibrous tissue layer as well as the growing of blood cells into materials indicated the nontoxicity of the composite. Based on the experiment results, surfacemodified BCP/PLLA biocomposite is proven to have superior biocompatibility, which would be a promising bone repairing material.
基金
supported by Doctoral Fund of Ministry of Education of China under grant No.20060610024