期刊文献+

贯穿裂纹管局部柔度的广义求解方法研究 被引量:4

Study on Generalized Solution of the Local Flexibility of Pipe with a Through Crack
下载PDF
导出
摘要 根据应变能释放原理并结合转动力学扩展了基于局部柔度的裂纹模型理论,推导了含有任意方向裂纹的贯穿裂纹管在纯弯矩作用下的局部柔度方程,并利用Matlab编写了该方程的求解程序。为验证贯穿裂纹管局部柔度方程的正确性,利用有限元分析软件ANSYS建立了裂纹管的有限元模型。理论计算值与有限元分析结果基本吻合,说明了弯矩作用下贯穿裂纹管局部柔度求解方法的合理性。 In this paper, the crack model theory based on the local flexibility is extended combining the Strain Energy Release Principle with the rotordynamics. The local flexibility equations of a pipe under pure bending which contains a through crack at any angle is derived, which is solved by the program based on Matlab. A finite element model of crack pipe is established by the software ANSYS in order to verify the local flexibility equations. The theoretical results approximately agree with the numerical results, the method of local flexibility equations of a through crack pipe under pure bending is rationality.
机构地区 大连理工大学
出处 《中国海洋平台》 2010年第4期25-31,共7页 China offshore Platform
关键词 损伤 贯穿裂纹 应变能释放原理 局部柔度 有限元 damage through crack Strain Energy Release Principle local flexibility finite element
  • 相关文献

参考文献12

  • 1Dimarogonas A D,Paipetis S A.Analytical methods in rotor dynamics[M].Applied Science Publishers,Essex,1983.
  • 2Dimarogonas A D.Vibration of cracked structure:a state of the art review[J].Engineering fracture mechanics,1996,55(5):831-857.
  • 3Papadopoulos C A,Dimarogonas A D.Coupled longitudinal and bending vibrations of a cracked shaft with an open crack[J].Journal of Sound and Vibration,1987,117(1):81-93.
  • 4Papadopoulos C A,Dimarogonas A D.Coupling of bending and torsional vibrations of a cracked Timoshenko shaft[J].Archive of Applied Mechanics,1987,57(4):257-266.
  • 5Papadopoulos C A.Some comments on the calculation of the local flexibility of cracked shafts[J].Journal of Sound and Vibration 2004,278(4-5):1205-1211.
  • 6Papadopoulos C A.The strain energy release approach for modeling cracks in rotors:A state of the art review[J].Mechanical systems and signal processing,2008,22(4):763-789.
  • 7Zheng D Y,Kessissoglou N J.Free vibration analysis of a cracked beam by finite element method[J].Journal of Sound and Vibration,2004,273(3,7):457-475.
  • 8Naniwadekar M R,Naik S S,Maiti S K.On prediction of crack in different orientations in pipe using frequency based approach[J].Mechanical Systems and Signal Processing,2008,22(3):693-708.
  • 9Tada H,Paris P C,Irwin G R.The stress analysis of cracks handbooks (Third Edition)[M].New York:ASME Press,2000.
  • 10He Y M,Ye J J,Chen X F,et al.Discussion on calculation of the local flexibility due to the crack in a pipe[J].Mechanical systems and signal processing,2009,23(3):804-810.

二级参考文献7

  • 1Newman Jr JC,Raju I.S.An empirical stress intensity factor equation for the surface crack[J].Engng Fracture Mech,1981,15:185-92.
  • 2Lin XB,Smith RA.Finite element modelling of fatigue crack growth of surface cracked plates D Part Ⅰ:The numerical technique[J].Engng Fracture Mech,1999,63:503-522.
  • 3Cao J J,Yang G J,Paker J A.,Burdekin F.M..Crack modeling in FE analysi of circular tubular joints[J] Engineering Fracture Mechanics,1998,61:537-553.
  • 4Anthony R.Ingraffea,corneliu manu.stress-intensity factor computation in three dimensions with quarter-point elements[J].international journal for numerical methods in engineering.1980,15:1427-1445.
  • 5Chiew S P,Lie S T,Lee C K,Huang Z W.Stress intensity factors for a surface crack in a tubular T-joint[J].International Journal of Pressure Vessels and Piping.2001,78:677-685.
  • 6Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J].Int J Fatigue 2000;22:369-387.
  • 7Lee M M K,Bowness D.Fatigue Analysis of Tubular Joints Using Finite Elements[J].Fatigue in Offshore Structures.1996,1:223-257.

共引文献26

同被引文献42

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部