摘要
一个图G=(V,E),V为顶点集,E为边集,|V|=n,|E|=m.每条边上赋予相应的权,没有环和重边的图称为简单图.Dijkstra[1]对赋正权的图给出了求两点间最短路的算法.但是,如果两点间存在至少两条最短路,如何确定呢?将Dijkstra算法加以改进就可以提供一个叠式向量标记算法用以确定两点间所有最短路.
Each arc is associated with a postive weight in a given graph G=(V,E),where V is the top set of vertice, and E is set of edges, |V| =n,|E|=m. A graph without rings and weight edges is called simple graph. Dijkstra[1]presented an algotithm in a positive weight graph.But how to psake a determination when exists more than one path between vedices? A new fold-vector sign algorithm for finding all the shortest paths between vertices is raised by means of improving the Dijkstra's algotithm.
出处
《黄金学报》
1999年第1期70-73,共4页
Gold Journal
关键词
赋权图
最短路
标记算法
weighted graphs, shortest path, labeling algorithm