期刊文献+

基于SIFT特征提取的非刚性医学图像配准算法研究 被引量:6

Research on Non-rigid Medical Image Registration Algorithm Based on SIFT Feature Extraction
原文传递
导出
摘要 针对医学图像的非刚性配准,给出一种实用的特征点匹配算法——基于尺度不变特征变换(SIFT)进行特征提取的图像配准算法。该算法利用图像特征在尺度空间具有平移、旋转和仿射变换不变性,提取图像的特征点。选择双向匹配算法建立特征间点的匹配关系,提高配准精度。在此基础上,根据仿射变换实现图像的非刚性配准,并采用归一化互信息测度和PSO优化算法优化图像配准过程。实验结果显示,相对于基于互信息的图像配准方法,该配准方法可以得到较好的图像配准结果。 In allusion to non-rigid registration of medical images,the paper gives a practical feature points matching algorithm——the image registration algorithm based on the scale-invariant features transform(Scale Invariant Feature Transform,SIFT).The algorithm makes use of the image features of translation,rotation and affine transformation invariance in scale space to extract the image feature points.Bidirectional matching algorithm is chosen to establish the matching relations between the images,so the accuracy of image registrations is improved.On this basis,affine transform is chosen to complement the non-rigid registration,and normalized mutual information measure and PSO optimization algorithm are also chosen to optimize the registration process.The experimental results show that the method can achieve better registration results than the method based on mutual information.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第4期763-768,784,共7页 Journal of Biomedical Engineering
关键词 非刚性配准 尺度不变特征变换 双向匹配 仿射变换 PSO Non-rigid registration Scale invariant feature transform(SIFT) Bidirectional matching Affine transform PSO
  • 相关文献

参考文献6

  • 1冯林,管慧娟,孙焘,滕弘飞.医学图像非刚性配准研究进展[J].北京生物医学工程,2006,25(4):437-440. 被引量:8
  • 2LOWED G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 3BROWN M, LOWED G. Invariant features from interest point groups[C]. UK: British Machine Vision Conference, 2002:656-665.
  • 4骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 5KENNEDY J, EBERHART R. Particle swarm optimization [C]. Australia Perth: IEEE Int Conf on Neural Networks, 1995:1942.
  • 6EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[C]. Japan Nagoya: Proc of the Sixth International Symposium on Micro Machine and Human Science, 1995:39.

二级参考文献29

  • 1冯林,张名举,贺明峰,戚正君,滕弘飞.用分层互信息和薄板样条实现医学图像弹性自动配准[J].计算机辅助设计与图形学学报,2005,17(7):1492-1496. 被引量:16
  • 2Van den PA,Evert Jan D Pol,Viergever MA.Medical image matching-a review with classification.IEEE engineering in Medicine and Biology,1993,12 (1):26
  • 3Benoit M Dawant.Non-rigid Registration of Medical Images:Purpose and Methods,a Short Survey,Biomedical Imaging,2002.Proceedings.IEEE International Symposium on,2002,465-468
  • 4Touraille Eric,Boire Jean-Yves.Elastic registration of MRI scans using Fast DCT,Proceedings of the 22th,Annual EMBS International Conference,2000
  • 5Toumoulin J Gu,Shu H.Spatio-temporal registration in coronary angiography.Proceeding of the 25 Annual International Conference of the IEEE EMBS,2003
  • 6Jochen F Krucker,Charles R Meyer,Gerald L Lecarpenter,et al.Carson,3D Spatial Compounding of Ultrasound Images Using Image -based Nonrigid Registration.Ultrasound in Med & Biol,2000,26 (9):1475-1488
  • 7Rohr K,Stiehl HS,Sprengel R,et al.Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines,IEEE.Transactions on Medical Imaging,2001,20 (6):526-534
  • 8Camara O,Delso G,Bloch I.Evalation of a Thoracic Elastic Registration Method Using Anatomical Constraints in Oncology.Proceedings of the Second Joint EMBS/BMES Conference,2002,2:1011-1021
  • 9David Mattes,David R.Haynor,Hubert Vesselle,et al.PET-CT Image Registration in the Chest Using Free-form Deformations.IEEE Transactions on Medical Imaging,2003,22 (1):120-128
  • 10Rexilius J,Warfield S K,Guttmann C R G,et al.A novel nonrigid registration algorithm and applications.Niessen W and Viergever M,Eds.MICCAI 2001,LNCS 2208,2001,923 -931

共引文献50

同被引文献60

  • 1ZHU S H,WANG D D, YU K, et al. Feature sdeetion for gene expression using model-based entropy[J]. IEEE Transactions on Computational Biology and Biolnformatlcs, 2010,7 (1). 25-36.
  • 2LIU H W, SUN J G. Feature selection with dynamic mutual information[J]. Pattern Recognition, 2009,42 : 1330-1339.
  • 3HAN C P. Bioimage informatics, A new area of engineering biology[J]. Bioinformaties, 2008, 24(17):1827-1836.
  • 4HAN C P, CHRIS D. Minimum redundancy feature selection from microarry gene expression data[J]. Journal of Bioinfor- matics and Computational Biology,2005,3(2):185-205.
  • 5HAN C P, CHRIS D, FU H L. Feature selection based on mutual information criteria of max-dependency, max-relevance,and mix-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (8) : 1226-1238.
  • 6HAN C P,CHRIS D, FU H L. Minimum redundancy maximum relevance feature selection[J]. IEEE Intelligent Systems,2005,20(6) :70-71.
  • 7PAL S K, DE R K, BASAK J. Unsupervised feature evaluation: A neuro-fuzzy approach[J]. IEEE Trans. Neural Network, 1999,11 (2):366-376.
  • 8BASAK J, DE R K, PAL S K. Unsupervised feature selection using a neuro-fuzzy approach2000 [J]. Pattern Recognition Letters, 1998,19 : 997-1006.
  • 9BASAK J, DE R K, PAL S K. Unsupervised feature extraction using neuro-fuzzy approach[J]. Fuzzy Sets and Systems, 2002,126:277-291.
  • 10李云.机器学习中若干特征选择算法研究[D].上海;上海交通大学,2007:10-18.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部