期刊文献+

一个结合形态学滤波和高斯-拉普拉斯滤波检测乳腺X线影像中钙化点的新方法

A New Approach to Mammogram Detection by Using Morphological and Laplacion-of-a-Gaussian Filter
原文传递
导出
摘要 微钙化点是乳腺X线影像上独立的亮点,它表征乳腺癌的早期症状。但由于乳腺图片本身规模大、复杂且噪声多,微钙化点体积很小,与乳腺背景对比度又低,所以很难被检出。形态学带通滤波(MBF)算法尽管能快速检出钙化点,但精度不足。高斯-拉普拉斯滤波(LoGF)尽管能比较精确地检出钙化点的位置但较费时。本文提出一种结合上述两者优点同时能克服其缺点的钙化点检测新方法。在南京中大医院乳腺癌数据集上所做实验结果表明,该方法的检测时间接近于MBF方法,同时准确度和LoGF检测方法相当。 Microcalcification is an early sign of breast cancer appearing as isolated bright spots in mammogram images.However,there is a difficulty in detecting the spots because they are small-sized and have noisy and big image background.Morphological bandpass filter(MBF) is a fast method for detecting microcalcifications,but the accuracy there-by is not satisfied.Though Laplacion-of-a-Gaussian(LoGF) method can achieve high accuracy in location,it is time consuming.For these reasons,a new detection method for combining the two above-mentioned methods is proposed in this paper.We conducted the experiments on the breast cancer database of Nanjing Zhongda Hospital.The experimental results confirm that the detecting speed for microcalcifications is comparable to that with the use of morphological filter method,and the detection precision is comparable to that with the use of LoGF method.
作者 王莹
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第4期907-911,共5页 Journal of Biomedical Engineering
关键词 微钙化点检测 高斯-拉普拉斯滤波 形态学带通滤波 Microcalcification detection Laplacion-of-a-Gaussian filter(LoGF) Morphological bandpass filter(MBF)
  • 相关文献

参考文献14

  • 1王瑞平,万柏坤,朱欣,曹旭晨,赵颖.乳腺钼钯X射线影像中微钙化点的检测方法[J].国外医学(生物医学工程分册),2001,24(5):212-217. 被引量:9
  • 2CHENG H D, CAI X P, CHEN X W, et al. Computer-aided detection and classification of microcalcifications in mammograms: A survey [J]. Pattern Recognition, 2003, 36: 2967- 2991.
  • 3SOLTANIAN-ZADEH H, RAFIEE-RAD F, POURABDOLLAH-NEJAD D S. Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcificaton classification in mammograms[J]. Pattern Recognition, 2004,37 : 1973- 1986.
  • 4PAPADOPOULOS A, FOTIADIS D I, LIKAS A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines[J]. Artificial Intelligence in Medicine, 2004,29 :141-150.
  • 5KANGH K, THANH N N, KIM SM, et al. Robust contrast enhancement for microcalcification in mammography [C]. Perugia,Lecture notes in Computer Science, 2004,3045:602-610.
  • 6SARMENTO A D. Revisiting wavelet & fuzzy-based denoising of medical images from ultrasound-mammography [C]. Springfield: Proceedings of the IEEE 30th Annual Northeast, 2004:51-52.
  • 7ROBIN N, STRICKLAND. Wavelet transforms for detecting microcalcifications inmammograms[J]. IEEE Transactions on Medical Imaging, 1996,24 :1215.
  • 8DAVIES D H, DANCE D R. Automatic computer detection of clustered microcalcifications in digital mammograms [J].Physics in Medicine and Biology, 1990, 35(8):1111-1118.
  • 9ELIA C D, MARROCCO C, MOLINARA M, et al. Detection of microcalcifications clusters in mammograms through TS-MRF segmentation and SVM-based classification[C]. Proceedings of the 17th Internetional Conference on Pattern Recognition, Cambridge Spinger,2004:742-745.
  • 10YU S, GUAN L. A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films [J].IEEE Trans Meal Imag,2000, 19(2) : 115-126.

二级参考文献33

  • 1李洁,高新波,焦李成.基于克隆算法的网络结构聚类新算法[J].电子学报,2004,32(7):1195-1199. 被引量:24
  • 2刘世岳,李珩,张俐,姚天顺.Co-training机器学习方法在中文组块识别中的应用[J].中文信息学报,2005,19(3):73-79. 被引量:8
  • 3贾新华,王哲,陈松灿.FAST SCREENING OUT TRUE NEGATIVE REGIONS FOR MICROCALCIFICATION DETECTION IN DIGITAL MAMMOGRAMS[J].Transactions of Nanjing University of Aeronautics and Astronautics,2006,23(1):52-58. 被引量:3
  • 4Jianping F, David K Y Y. Automatic image segmentation by integrating color-edge extraction and seeded region growing[ J ]. Image Processing, IEEE Trans, 2001,10(10) :1454-1466.
  • 5Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679 - 698.
  • 6Wang Xiao-peng, Luo Jin-wen. Edge detection based on regulated morphological gradient [ A ]. Proceedings of ICCEA04[C]. ICCEA ,2004. 419 -422.
  • 7S Mallat, S Zhong. Characterization of signals from multiscale edges [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14 ( 7 ) : 710 - 732.
  • 8Hanmandlu M, See J, Vasikarla S. Fuzzy edge detector using entropy optimization[ A ]. Proceedings of ITCC04[C]. ITCC ,2004.665 -670.
  • 9Gang L, Haralick R M. Two practical issues in canny's edge detector implementation [ A ]. Proceedings of ICPR00 [ C ]. ICPR,2000. 676 - 678.
  • 10CHENG H D, CAI Xiaopeng, CHEN Xiaowei, HU Liming, LOU Xueling. Computer-aided detection and classification of microcalcifications in mammograms: a survey [ J ]. Pattern Recognition, 2003,36:2967-2991.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部