期刊文献+

C纳米悬浮液的电流体驱动雾化研究 被引量:1

Electrohydrodynamic atomization of a C nano-suspension
下载PDF
导出
摘要 以制备质子交换膜燃料电池膜电极组件扩散层中微孔层的原料——C纳米悬浮液为研究对象,研究了质量分数6%的C纳米悬浮液电流体驱动雾化(electrohydrodynamic atomization,EHDA)的雾化模式及稳定锥柱型雾化模式的形成条件。在稳定锥柱模式下,研究了雾化参数(电压、流量及沉积高度)对沉积颗粒尺寸、分布及沉积膜结构的影响。流量与沉积高度对沉积颗粒的尺寸及分布影响较大,电压的影响相对较小,当流量增大或沉积高度减小时沉积颗粒分布变密集,沉积颗粒的尺寸主要分布在0.2~0.4μm范围内。在不同的沉积高度下,进行C膜的沉积,沉积高度越高C膜结构越疏松,沉积高度越低C膜结构越致密。基于此研究,提出了一种基于电流体驱动雾化沉积技术制备质子交换膜燃料电池膜电极组件扩散层及微孔层的方法。 6% C nano-suspension was atomized using electrohydrodynamic atomization (EHDA) technique; the C nano-suspension is the key material for the formation of the micro-porous layer (MPL) of gas diffusion layer (GDL) which is a major part of membrane electrode assembly (MEA) of proton exchange membrane fuel cells (PEMFC). The different atomization modes and the condition for the formation of stable cone-jet mode were studied. In the stable cone-jet mode, the effect of the atomization parameters (applied voltage, flow rate and working distance) on size and distribution of the deposited droplets and structure of the films were examined. The results showed that the flow rate and working distance had strong influence on the size and distribution of the droplets, while the applied voltage was inconspicuous. The higher flow rate and working distance resulted in dense deposited droplets, which is mainly at the range of 0.2 μm to 0.4 μm. C films were also deposited using C nano-suspension and EHDA technique in stable cone-jet mode at different working distance. At a greater distance dense C films were produced, at a smaller distance porous C films were generated. Based on this research, this work presents a method for the formation of MPL and DL of PEMFC.
出处 《中国科技论文在线》 CAS 2010年第8期579-584,共6页
基金 高等学校博士学科点专项科研基金资助项目(20090041120041) 国家自然科学基金资助项目(50905027)
关键词 电流体驱动雾化 燃料电池 膜电极 扩散层 微孔层 electrohydrodynamic atomization proton exchange membrane fuel cells membrane electrode assembly gas diffusion layer micro-porous layer
  • 相关文献

参考文献14

  • 1刘坤,张永生,刘艳,詹志刚,肖金生.孔隙率间隔分布扩散层的PEM燃料电池性能[J].武汉理工大学学报,2008,30(10):127-130. 被引量:7
  • 2詹志刚,张永生,肖金生,潘牧.质子交换膜燃料电池梯度扩散层水传输研究[J].华中科技大学学报(自然科学版),2007,35(9):45-48. 被引量:10
  • 3张学伟.质子交换膜燃料电池膜电极的研究[D]哈尔滨工业大学,哈尔滨工业大学2007.
  • 4A. Jaworek.Electrospray droplet sources for thin film deposition[J]. Journal of Materials Science . 2007 (1)
  • 5Paola Gallo Stampino,Cinzia Cristiani,Giovanni Dotelli,et al.Effect of different substrates,inks composition and rheology on coating deposition of microporous layer(MPL)for PEM-FCs. Catalysis Today . 2009
  • 6Shui J L,Yu Y,Chen C H.Deposition conditions in tailoring the morphology of highly porous reticular films prepared by electrostatic spray deposition(ESD)technique. Applied Surface Science . 2006
  • 7Hendri Widiyandari,Christopher J Hogan Jr,Ki Myoung Yun,et al.Production of narrow-size-distribution polymer-pigment-nanoparticle composites via electrohydrodynamic atomization. Macromolecular Materials and Engineering . 2007
  • 8Kim H S,Lee D Y,Park J H,et al.Optimization of electrohydrodynamic writing technique to print collagen. Experimental Techniques . 2007
  • 9Han M,Xu J H,Chan S H et al.Characterization of gas diffusion layers for PEMFC. Electrochimica Acta . 2008
  • 10Fernández de la Mora J.The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics . 2007

二级参考文献13

  • 1Nam J H, Kaviany M. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium[J]. Int J Heat and Mass Transfer, 2003, 46: 4 595-4 611.
  • 2Qi Z G, Kaufman A. Improvement of water management by a microporous sublayer for PEM fuel cells [J].J of Power Sources, 2002, 109: 38-46.
  • 3KongC S, KimD Y, Lee H K, et al. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells [J]. J of Power Sources, 2002, 108: 185-191.
  • 4Wilkinson P D, St-Pierre J. In-plane gradients in fuel cell structure and conditions for higher performance [J].J of Power Sources, 2003, 113: 101-108.
  • 5Chua H S, Yeha C, Chenb F L. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell[J]. J of Power Sources, 2003, 123: 1-9.
  • 6Roshandel R, Farhanieha B, Saievar-Iranizad E. The effects of porosity distribution variation on PEM fuel cell performance[J]. Renewable Energy, 2005, 30: 1 557-1 572.
  • 7Gostick J T, Fowler M W, Ioannidis M A, et al. Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells[J]. J of Power Sources, 2006, 156: 375-387.
  • 8汪圣龙.质子交换膜燃料电池梯度扩散层研究[D].武汉:武汉理工大学材料复合新技术国家重点实验室,2005.
  • 9Qi Z G, Kaufman A. Improvement of Water Management by a Microporous Sublayer for PEM Fuel Cells[J ]. Power Sources, 2002, 109.38-46.
  • 10Pasaogullari U, Wang C Y. Two-phase Transport and the Role of Micro-porous Layer in Polymer Electrolyte Fuel Cells[J]. Electrochimica Acta, 2004, 49 (25) : 4359-4369.

共引文献15

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部