期刊文献+

混合非线性变分包含解的灵敏性分析

Sensitivity Analysis for Mixed Nonlinear Variational Inclusions
下载PDF
导出
摘要 在Hilbert空间中,引入和研究了一类混合非线性变分包含,并对极大单调映射运用隐预解算子技巧分析了其解的灵敏性。 We introduce a class of mixed nonlinear variational inclusions in Hilbert spaces.And we analyze the sensitivity for them by using the resolvent operator technique for maximal monotone mapping.
作者 刘江蓉
出处 《武汉工业学院学报》 CAS 2010年第3期118-121,共4页 Journal of Wuhan Polytechnic University
关键词 混合非线性变分包含 隐预解算子 灵敏性分析 mixed nonlinear variational inclusions implicit resolvent operator sensitivity analysis
  • 相关文献

参考文献5

  • 1Dafermos S. Sensitivity in variational inequalities [ J ]. Math Oper Res, 1988,13:421-434.
  • 2Noor M A. Sensitivity analysis for quasi-variational inequalities [ J ]. J. Optim Theory Appl, 1997,95:399-407.
  • 3Noor M A. Sensitivity analysis for quasi-variational inclusions [J]. J Math Anal Appl, 1999, 236:290-299.
  • 4Agarwal R P, Cho Y J, Huang N J. Sensitivity analysis for strongly nonlinear quasivariational inclusions [ J ]. Appl Math Lett,2000,13 : 19-24.
  • 5周若菡,丁协平.Banach空间内一类广义隐变分包含解集的灵敏性分析[J].四川师范大学学报(自然科学版),2009,32(2):152-156. 被引量:3

二级参考文献21

  • 1金茂明.一类广义拟变分包含的灵敏性分析[J].广西师范大学学报(自然科学版),2005,23(2):56-59. 被引量:2
  • 2丁协平.包含h-极大单调映象的广义混合拟变分包含组的灵敏性分析(英文)[J].四川师范大学学报(自然科学版),2007,30(1):1-9. 被引量:4
  • 3Baiocchi C, Capelo A. Variational and Quasi-variational Inequalities [ M ]. New York: John Wiley and Sons, 1984.
  • 4Giannessi F, Maugeri A. Variational Inequalities and Network Equilibrium Problems[ M]. New York: Plenum Press, 1995.
  • 5Adly S. Perturbed algorithms and sensitivity analysis for a general class of variational inclusions[J]. J Math Anal Appl ,1996 ,201:609-630.
  • 6Noor M A, Noor K I. Sensitivity analysis for quasi-variational inclusions[J]. J Math Anal Appl,1999,256:290-299.
  • 7Ding X P, Lou C L. On parametric generalized quasi-variational inequalities[ J ]. J Optim Theory Appl, 1999,100:195-205.
  • 8Agarwal R P, Cho Y J, Hnang N J. Sensitivity analysis for strongly nonlinear quasi-variational inclusions[J]. Appl Math Lett,2003,13:19-24.
  • 9Dafermos S. Sensitivity analysis in variational inequalities[ J ]. Math Opera Res, 1998,13:421-434.
  • 10Mukherjee S. Sensitivity analysis of generalized variational inequalities[J]. J Math Anal Appl,1992,167:299-304.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部